73 resultados para Ventricular Premature Complexes
Resumo:
The reactions of mercury(II) with the mixed donor encapsulating ligands 3,6,16-trithia-6,11,19-triazabicyclo[6.6.6]icosane (AMN(3)S(3)sar) and 1-amino-8-methyl-6,19-dithia-3,10,13,16-tetraazabicyclo[6.6.6]icosane (AMN(4)S(2)sar) have been studied. NMR ligand-ligand competition experiments with the ligands 1,4,8,11-tetraazaeyclotetradecane ([14]aneN(4)), 1-thia-4,7,10-triazacyclododecane ([12]aneN(3)S) and ethylenediaminetetraacetic acid (EDTA) with AMN(3)S(3)sar and Hg(II) indicated that [14]aneN(4) would be an appropriate competing ligand for the, determination of the Hg(II) stability constant. Calculations indicated the ratio of concentrations of AMN3S3sar, [14]aneN(4) and Hg(II) required for the determination of the stability constant ranged from 1:1:1 to 1:5:1. Refinement of the titration curves yielded log(10)K[Hg(AMN(3)S(3)sar)](2+) = 17.7. A similar competition titration resulted in the determination of the stability constant for the AMN(4)S(2)sar system as log(10)K[Hg(AMN(4)S(2)sar)](2+) = 19.5. The observed binding constants for the mixed N/S donor systems and the hexaaza analogues sar (3,6,10,13,16,19-hexaazabicyclo [6.6.6]icosane) and diamsar (1,8-diamino-3,6,10,13,16,19 -hexazabicyclo [6.6.6] icosane (log(10)K-[Hg(diamsar)](2+) = 26.4; log(10)K[Hg(sar)](2+) = 28.1) differ by approximately ten orders of magnitude. The difference is ascribed not to a cryptate effect but to a mismatch in the Hg-N and Hg-S bond lengths in the N/S systems.
Resumo:
For many years proof that the hypoxic nature of malignant tumours can be used to selectively target anticancer drugs has been sought. Several classes of potential redox activated anticancer drugs have been developed to take advantage of the reducing environment resulting from the hypoxia. Drug complexes with redox active metal centres as carriers have been investigated, but have largely been employed with cytotoxic drugs that require release of the drug intracellularly, complicating the design of such complexes. MMP inhibitors, a new class of anticancer drug, conversely act in the extracellular environment and we have investigated inhibitor complexes with several redox active transition metals. Marimastat is an MMP inhibitor with potent in-vitro antimetastatic activity and was recently in Phase III clinical trials for a variety of cancer types. We have synthesised a Co(II1) complex of marimastat incorporating the tetradentate ligand tpa (tris(2-methylpyridyl)amine) as a carrier ligand. The complex was structurally characterised in the solid state by single crystal X-ray diffraction, the first example of a crystal structure containing marimastat. 2D COSY and NOESY NMR spectra showed that the complex exists in two isomeric forms in solution, corresponding to the cis and trans isomers yet only crystallises in one of these forms. Biological testing of the complex in mice with 4T1.2 tumours showed interesting and unexpected outcomes. Initial results of the tumour growth inhibition study showed that a significant inhibition of growth was exhibited by the complex over the free inhibitor and the control. However, the metastatic potential of both free marimastat and the complex were higher than the control indicating likely problems with the experimental protocol. Further experiments are needed to determine the potential of such complexes as hypoxia activated prodrugs but there appears at least to be some promise.
Resumo:
The synthesis of the hexadentate ligand 2,2,9,9-tetra(methyleneamine)-4,7-dithiadecane (EtN(4)S(2)amp) is reported. The ligand is of a type in which bifurcations of the chain occur at atoms other than donor atoms. The cobalt(III) complex [Co(EtN(4)S(2)amp)](3+) (1) was isolated and characterized. The synthetic methodology also results in a number of by-products, notably 2,9,9-tris(methyleneamine)-9-methylenehydroxy-4,7-dithiadecane (Et(HO)N(3)S(2)amp) and an eleven-membered pendant arm macrocyclic ligand 6,10-dimethyl-6,10-bis(methyleneamine)-1,4-dithia-8-azaacycloundec-7- ene (dmatue). The complexes [Co(Et(HO)N(3)S(2)amp)](3+) (2), in which the alcohol is coordinated to the metal ion, and [Co(dmatue)Cl](2+) (4) were isolated and characterized. Et(HO)N(3)S(2)amp also undergoes complexation with cobalt(III) to produce two isomers endo-[Co(Et(HO) N(3)S(2)amp)Cl](2+) (endo-3) and exo-[Co(Et(HO) N(3)S(2)amp)Cl](2+) (exo-3), both with an uncoordinated alcohol group. endo- 3 has the alcohol positioned cis, and exo-3 trans, to the sixth metal coordination site. Reaction of 1 with isobutyraldehyde, paraformaldehyde and base in dimethylformamide results in the encapsulated complex [Co(1,5,5,9,13,13-hexamethyl-18,21-dithia-3,7,11,15-tetraazabicyclo[7.7.6]docosa- 3,14-diene)](ClO4)(3) . 2H(2)O ([Co(Me(6)docosadieneN(4)S(2))](3+) ( 5). All complexes have been characterized by single crystal X-ray study. The low-temperature (11 K) absorption spectrum of 1 has been measured in Nafion films with spin-allowed (1)A(1g) --> T-1(1g) and (1)A(1g) --> T-1(2g) and spin forbidden (1)A(1g) --> T-3(1g) and (1)A(1g) --> T-3(2g) bands observed. The octahedral ligand-field parameters were determined (10Dq = 22570 cm(-1), B = 551 cm(-1); C = 3500 cm(-1)). For 5 10Dq and B were determined (20580 cm(-1); 516 cm(-1), respectively) and compared with those for similar expanded cavity complexes [Co(Me(8)tricosatrieneN(6))](3+) and [Co(Me(5)tricosatrieneN(6))](3+).
Resumo:
Positive end expiratory pressure (PEEP) is important for neonatal ventilation but is not considered in guidelines for resuscitation. Our aim was to investigate the effects of PEEP on cardiorespiratory parameters during resuscitation of very premature lambs delivered by hysterotomy at similar to125 d gestation (term similar to147 d). Before delivery, they were intubated and lung fluid was drained. Immediately after delivery, they were ventilated with a Drager Babylog plus ventilator in volume guarantee mode with a tidal volume of 5 mL/kg. Lambs were randomized to receive 0, 4, 8, or 12 cm H2O of PEEP. They were ventilated for a 15-min resuscitation period followed by 2 h of stabilization at the same PEEP. Tidal volume, peak inspiratory pressure, PEEP, arterial pressure, oxygen saturation, and blood gases were measured regularly, and respiratory system compliance and alveolar/ arterial oxygen differences were calculated. Lambs that received 12 cm H2O of PEEP died from pneumothoraces; all others survived without pneumothoraces. Oxygenation was significantly improved by 8 and 12 cm H2O of PEEP compared with 0 and 4 cm H2O of PEEP. Lambs with 0 PEEP did not oxygenate adequately. The compliance of the respiratory system was significantly higher at 4 and 8 cm H2O of PEEP than at 0 PEEP. There were no significant differences in partial pressure of carbon dioxide in arterial blood between groups. Arterial pressure was highest with 8 cm H2O of PEEP, and there was no cardiorespiratory compromise at any level of PEEP. Applying PEEP during resuscitation of very premature infants might be advantageous and merits further investigation.
Resumo:
Background: Over-ventilation causing low arterial carbon dioxide levels (PaCO2) has been associated with the development of neonatal chronic lung disease and adverse outcomes. This may occur very soon after birth. Aim: To investigate the effect on PaCO2 and oxygenation of very premature lambs resuscitated with different tidal volumes and PEEP. Methods: Anaesthetised lambs delivered at 126 days gestation were randomised to 15 min resuscitation with 3 regimes: (1) Laerdal resuscitation bag (B) with 100% oxygen and no PEEP, (2) fixed tidal volume (VT) of 5 mL/kg, or (3) VT of 10 mL/kg, both delivered with a Babylog 8000 ventilator in volume guarantee mode with 8 cm H2O PEEP and variable FiO2. Frequent blood gases were measured and VT, mean airway pressure (Paw), minute volume (MV), ventilation rate (VR), respiratory system compliance (Crs) and alveolar/arterial oxygen difference (AaDO2) were recorded. Results: Twenty lambs were studied. B (1) was associated with more variable VT and peak inspiratory pressures (PIP) compared to fixed tidal volumes (2 and 3). The lambs ventilated with 10 mL/kg were over-ventilated, those ventilated with 5 mL/kg were slightly under-ventilated. Those ventilated with the Laerdal bag had a mean VT of 7.5 mL/kg and were normocarbic. The different tidal volumes had little effect on oxygenation. PEEP improved oxygenation. The table shows the values at 15 minutes expressed as mean and SEM. TABLE. No caption av... TABLE. No caption av... Image Tools Conclusion: Very premature lambs can be effectively resuscitated from birth using volume guarantee ventilation. Within minutes of birth different tidal volumes had a large effect on PaCO2 and no effect on oxygenation. Studies are needed to determine the appropriate tidal volume for resuscitating very premature infants to maintain acceptable levels of PaCO2. © International Pediatrics Research Foundation, Inc. 2004. All Rights Reserved.
Resumo:
The pendent-arm macrocyclic hexaamine trans-6,13-dimethyl-1,4,8,11-tetraazacyclotetradecane-6,13-diamine (L) may coordinate in tetra-, penta- or hexadentate modes, depending on the metal ion and the synthetic procedure. We report here the crystal structures of two pseudo-octahedral cobalt(III) complexes of L, namely sodium trans-cyano(trans-6,13-dimethyl-1,4,8,11-tetraazacyclotetradecane-6,13-diamine)cobalt(III) triperchlorate, Na[Co(CN)(C13H30N6)](ClO4)(3) or Na{trans-[CoL(CN)]}(ClO4)(3), (I), where L is coordinated as a pentadentate ligand, and trans-dicyano(trans-6,13-dimethyl-1,4,8,11-tetraazacyclotetradecane-6,13-diamine) cobalt (III) trans-dicyano (trans-6,13-dimethyl-1,4,8,11-tetraazacyclotetradecane-6,13-diaminium)cobalt(III) tetraperchlorate tetrahydrate, [Co(CN)(2)(Cl4H32N6)][Co(CN)(2)(Cl4H30N6)](ClO4)(4)•-4H(2)O or trans-[CoL(CN)(2)]trans-[Co(H2L)(CN)(2)] (ClO4)(4)•-4H(2)O, (II), where the ligand binds in a tetradentate mode, with the remaining coordination sites being filled by C-bound cyano ligands. In (I), the secondary amine Co-N bond lengths lie within the range 1.944 (3)-1.969 (3) &ANGS;, while the trans influence of the cyano ligand lengthens the Co-N bond length of the coordinated primary amine [Co-N = 1.986 (3) &ANGS;]. The Co-CN bond length is 1.899 (3) &ANGS;. The complex cations in (11) are each located on centres of symmetry. The Co-N bond lengths in both cations are somewhat longer than in (I) and span a narrow range [1.972 (3)-1.982 (3) &ANGS;]. The two independent Co-CN bond lengths are similar [1.918 (4) and 1.926 (4) &ANGS;] but significantly longer than in the structure of (1), again a consequence of the trans influence of each cyano ligand.
Resumo:
Extension of overthickened continental crust is commonly characterized by an early core complex stage of extension followed by a later stage of crustal-scale rigid block faulting. These two stages are clearly recognized during the extensional destruction of the Alpine orogen in northeast Corsica, where rigid block faulting overprinting core complex formation eventually led to crustal separation and the formation of a new oceanic backarc basin (the Ligurian Sea). Here we investigate the geodynamic evolution of continental extension by using a novel, fully coupled thermomechanical numerical model of the continental crust. We consider that the dynamic evolution is governed by fault weakening, which is generated by the evolution of the natural-state variables (i.e., pressure, deviatoric stress, temperature, and strain rate) and their associated energy fluxes. Our results show the appearance of a detachment layer that controls the initial separation of the brittle crust on characteristic listric faults, and a core complex formation that is exhuming strongly deformed rocks of the detachment zone and relatively undeformed crustal cores. This process is followed by a transitional period, characterized by an apparent tectonic quiescence, in which deformation is not localized and energy stored in the upper crust is transferred downward and causes self-organized mobilization of the lower crust. Eventually, the entire crust ruptures on major crosscutting faults, shifting the tectonic regime from core complex formation to wholesale rigid block faulting.
Resumo:
The 4-carboxyphenyl-appended macrocyclic ligand trans-6,13-dimethyl-6-((4-carboxybenzyl)amino)-1,4,8,11-tetraazacyclotetradecane-6-amine (HL10) has been synthesised and complexed with Co-III. The mononuclear complexes [Co(HL10)(CN)](2+) and [CoL10(OH)](+) have been prepared and the crystal structures of their perchlorate salts are presented, where the ligand is bound in a pentadentate mode in each case while the 4-carboxybenzyl-substituted pendent amine remains free from the metal. The cyano-bridged dinuclear complex [CoL10-mu-NC-Fe(CN)(5)](2-) was also prepared and chemisorbed on titania-coated ITO conducting glass. The adsorbed complex is electrochemically active and cyclic voltammetry of the modified ITO working electrode in both water and MeCN solution was undertaken with simultaneous optical spectroscopy. This experiment demonstrates that reversible electrochemical oxidation of the Fe-II centre is coupled with rapid changes in the optical absorbance of the film.
Resumo:
Background: Guidelines recommend neonatal resuscitation without controlling tidal volume or positive end-expiratory pressure (PEEP). However, these may improve gas exchange, lung volume and outcome. Aim: To investigate resuscitation of very premature lambs with a Laerdal bag without PEEP versus volume guarantee ventilation with PEEP. Methods: Anaesthetized lambs (n = 20) delivered at 125 d gestation were randomized to three groups receiving 15 min resuscitation: (1) Laerdal bag and no PEEP; (2) ventilation with a tidal volume of 5 ml/kg and 8 cm H2O PEEP; (3) ventilation with 10 ml/kg and 8 cm H2O PEEP. They were then all ventilated for 2 h with tidal volumes of 5 or 10 ml/kg, and 8 cm H2O PEEP. Ventilation parameters and blood gases were recorded. Results: Different tidal volumes affected PaCO2 within minutes, with 10 ml/kg causing severe hypocarbia. PEEP had little effect on PaCO2. Oxygenation improved significantly with PEEP of 8 cm H2O, irrespective of tidal volume. Conclusion: Very premature lambs can be resuscitated effectively using volume-guarantee ventilation and PEEP. Tidal volumes affected PaCO2 within minutes but had little effect on oxygenation. PEEP halved the oxygen requirement compared with no PEEP. Resuscitating premature babies with controlled tidal volumes and PEEP might improve their outcome.
Resumo:
Two N-based isomeric copper(II) complexes of the macrocycle trans-6,13-dimethyl-6,13-bis(dimethylamino)1,4,8,11-tetraazacyclotetradecane (L(3)) have been synthesized and characterised spectroscopically and structurally: alpha-[CuL(3)(OH2)(2)]Cl-2, monoclinic, space group C2/m, a = 12.908(4), b = 12.433(2), c = 7.330(2) Angstrom, beta = 105.87(2)degrees, Z = 2; beta-[CuL(3)(OClO3)(2)]. 2H(2)O, monoclinic, space group P2(1)/c, a = 9.708(3), b = 9.686(3), c = 14.202(4) Angstrom, beta = 106.17(1)degrees, Z = 2. The two isomers exhibit very similar co-ordination spheres but significantly different visible electronic maxima. This difference is attributed to an intramolecular N ... H contact between the pendant dimethylamino group and an adjacent secondary amine H atom.
Resumo:
Two new macropolycyclic hexaamines L(2) and L(4) as their copper(II) complexes have been isolated as products from the condensation of the diamino-substituted macrocyclic complex trans-(6,13-dimethyl-1,4,8,11-tetraazacyclo-tetradecane-6,13-diamine)copper(II) [CuL(1)](2+) with aqueous formaldehyde. Both of the complexes exhibit methylene bridges between the pendant amine and the adjacent co-ordinated macrocyclic N-donors. Their crystal structures have been determined: [CuL(2)(NCS)][SCN], triclinic, space group P (1) over bar, a = 7.133(2), b = 9.813(2), c = 16.745(3) Angstrom, alpha = 101.05(2), beta = 99.36(2), gamma = 99.77(2)degrees, Z = 2; [CuL(4)Cl][ClO4]. H2O, triclinic, space group P (1) over bar, a = 9.3327(8), b = 10.8989(6), c = 12.672(1) Angstrom, alpha = 68.591(6), beta = 78.899(6), gamma = 87.384(6)degrees, Z = 2. The complexes exhibit square-pyramidal geometries, and significantly lower-energy electronic maxima relative to their parent complex [CuL(1)](2+). Electrochemistry of [CuL(2)](2+) revealed a reversible Cu-II-Cu-I redox couple, by contrast to those of macromonocyclic analogues.