38 resultados para Vascular Endothelial


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Caveolae and their proteins, the caveolins, transport macromolecules; compartmentalize signalling molecules; and are involved in various repair processes. There is little information regarding their role in the pathogenesis of significant renal syndromes such as acute renal failure (ARF). In this study, an in vivo rat model of 30 min bilateral renal ischaemia followed by reperfusion times from 4 h to 1 week was used to map the temporal and spatial association between caveolin-1 and tubular epithelial damage (desquamation, apoptosis, necrosis). An in vitro model of ischaemic ARF was also studied, where cultured renal tubular epithelial cells or arterial endothelial cells were subjected to injury initiators modelled on ischaemia-reperfusion (hypoxia, serum deprivation, free radical damage or hypoxia-hyperoxia). Expression of caveolin proteins was investigated using immunohistochemistry, immunoelectron microscopy, and immunoblots of whole cell, membrane or cytosol protein extracts. In vivo, healthy kidney had abundant caveolin-1 in vascular endothelial cells and also some expression in membrane surfaces of distal tubular epithelium. In the kidneys of ARF animals, punctate cytoplasmic localization of caveolin-1 was identified, with high intensity expression in injured proximal tubules that were losing basement membrane adhesion or were apoptotic, 24 h to 4 days after ischaemia-reperfusion. Western immunoblots indicated a marked increase in caveolin-1 expression in the cortex where some proximal tubular injury was located. In vitro, the main treatment-induced change in both cell types was translocation of caveolin-1 from the original plasma membrane site into membrane-associated sites in the cytoplasm. Overall, expression levels did not alter for whole cell extracts and the protein remained membrane-bound, as indicated by cell fractionation analyses. Caveolin-1 was also found to localize intensely within apoptotic cells. The results are indicative of a role for caveolin-1 in ARF-induced renal injury. Whether it functions for cell repair or death remains to be elucidated. Copyright (C) 2003 John Wiley Sons, Ltd.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cultivation technologies promoting organization of mammalian cells in three dimensions are essential for gene-function analyses as well as drug testing and represent the first step toward the design of tissue replacements and bioartificial organs. Embedded in a three-dimensional environment, cells are expected to develop tissue-like higher order intercellular structures (cell-cell contacts, extracellular matrix) that orchestrate cellular functions including proliferation, differentiation, apoptosis, and angiogenesis with unmatched quality. We have refined the hanging drop cultivation technology to pioneer beating heart microtissues derived from pure primary rat and mouse cardiomyocyte cultures as well as mixed populations reflecting the cell type composition of rodent hearts. Phenotypic characterization combined with detailed analysis of muscle-specific cell traits, extracellular matrix components, as well as endogenous vascular endothelial growth factor (VEGF) expression profiles of heart microtissues revealed (1) a linear cell number-microtissue size correlation, (2) intermicrotissue superstructures, (3) retention of key cardiomyocyte-specific cell qualities, (4) a sophisticated extracellular matrix, and (5) a high degree of self-organization exemplified by the tendency of muscle structures to assemble at the periphery of these myocardial spheroids. Furthermore (6), myocardial spheroids support endogenous VEGF expression in a size-dependent manner that will likely promote vascularization of heart microtissues produced from defined cell mixtures as well as support connection to the host vascular system after implantation. As cardiomyocytes are known to be refractory to current transfection technologies we have designed lentivirus-based transduction strategies to lead the way for genetic engineering of myocardial microtissues in a clinical setting.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ocular neovascularisation is the leading cause of blindness in developed countries and the most potent angiogenic factor associated with neovascularisation is vascular endothelial growth factor (VEGF). We have previously described a sense oligonucleotide (ODN-1) that possesses anti-human and rat VEGF activity. This paper describes the synthesis of lipid-lysine dendrimers and their subsequent ability to delivery ODN-1 to its target and mediate a reduction in VEGF concentration both in vitro and in vivo. Positively charged dendrimers were used to deliver ODN-1 into the nucleus of cultured D407 cells. The effects on VEGF mRNA transcription and protein expression were analysed using RT-PCR and ELISA, respectively. The most effective dendrimers in vitro were further investigated in vivo using an animal model of choroidal neovascularisation (CNV). All dendrimer/ODN-1 complexes mediated in a significant reduction in VEGF expression during an initial 24 hr period (40-60%). Several complexes maintained this level of VEGF reduction during a subsequent, second 24 hr period, which indicated protection of ODN-1 from the effects of endogenous nucleases. In addition, the transfection efficiency of dendrimers that possessed 8 positive charges (chi = 81(.)51%) was significantly better (P = 0(.)0036) than those that possessed 4 positive charges (chi = 56(.)8%). RT-PCR revealed a correlation between levels of VEGF protein mRNA. These results indicated that the most effective structural combination was three branched chains of intermediate length with 8 positive charges such as that found for dendrimer 4. Dendrimer 4 and 7/ODN-1 complexes were subsequently chosen for in vivo analysis. Fluorescein angiography demonstrated that both dendrimers significantly (P < 0(.)0001) reduced the severity of laser mediated CNV for up to two months post-injection. This study demonstrated that lipophilic, charged dendrimer mediated delivery of ODN-1 resulted in the down-regulation of in vitro VEGF expression. In addition, in vivo delivery of ODN-1 by two of the dendrimers resulted in significant inhibition of CNV in an inducible rat model. Time course studies showed that the dendrimer/ODN-1 complexes remained active for up to two months indicating the dendrimer compounds provided protection against the effects of nucleases. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Vascular endothelial growth factor (VEGF) is one of the major mediators of retinal ischemia-associated neovascularization. We have shown here that adeno-associated virus (AAV)-mediated expression of sFIt-1, a soluble form of the Flt-1 VEGF receptor, was maintained for up to 8 and 17 months postinjection in mice and in monkeys, respectively. The expression of sFIt-1 was associated with the long-term (8 months) regression of neovascular vessels in 85% of trVEGF029 eyes. In addition, it resulted in the maintenance of retinal morphology, as the majority of the treated trVEGF029 eyes (75%) retained high numbers of photoreceptors, and in retinal function as measured by electroretinography. AAV-mediated expression of sFIt-1 prevented the development of laser photocoagulation-incluced choroidal neovascularization in all treated monkey eyes. There were no clinically or histologically detectable signs of toxicity present in either animal model following AAV.sFlt injection. These results suggest that AAV-mediated secretion gene therapy could be considered for treatment of retinal and choroidal neovascularizations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The nuclear localization of a number of growth factors, cytokine ligands and their receptors has been reported in various cell lines and tissues. These include members of the fibroblast growth factor (FGF), epidermal growth factor and growth hormone families. Accordingly, a number of nuclear functions have begun to emerge for these protein families. The demonstration of functional interactions of these proteins with the nuclear import machinery has further supported their functions as nuclear signal transducers. Here, we review the membrane- trafficking machinery and pathways demonstrated to regulate this cell surface to nucleus-trafficking event and highlight the many remaining unanswered questions. We focus on the FGF family, which is providing many of the clues as to the process of this unusual phenomenon.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Purpose: PI-88 is a mixture of highly sulfated oligosaccharides that inhibits heparanase, an extracellular matrix endoglycosidase, and the binding of angiogenic growth factors to heparan sulfate. This agent showed potent inhibition of placental blood vessel angiogenesis as well as growth inhibition in multiple xenograft models, thus forming the basis for this study. Experimental Design: This study evaluated the toxicity and pharmacokinetics of PI-88 (80-315 mg) when administered s.c. daily for 4 consecutive days bimonthly (part 1) or weekly (part 2). Results: Forty-two patients [median age, 53 years (range, 19-78 years); median performance status, 1] with a range of advanced solid tumors received a total of 232 courses. The maximum tolerated dose was 250 mg/d. Dose-limiting toxicity consisted of thrombocytopenia and pulmonary embolism. Other toxicity was generally mild and included prolongation of the activated partial thromboplastin time and injection site echymosis. The pharmacokinetics were linear with dose. Intrapatient variability was low and interpatient variability was moderate. Both AUC and C-max correlated with the percent increase in activated partial thromboplastin time, showing that this pharmacodynamic end point can be used as a surrogate for drug exposure, No association between PI-88 administration and vascular endothelial growth factor or basic fibroblast growth factor levels was observed. One patient with melanoma had a partial response, which was maintained for >50 months, and 9 patients had stable disease for >= 6 months. Conclusion: The recommended dose of PI-88 administered for 4 consecutive days bimonthly or weekly is 250 mg/d. PI-88 was generally well tolerated. Evidence of efficacy in melanoma supports further evaluation of PI-88 in phase II trials.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Many serine proteases play important regulatory roles in complex biological systems, but only a few have been linked directly with capillary morphogenesis and angiogenesis. Here we provide evidence that serine protease activities, independent of the plasminogen activation cascade, are required for microvascular endothelial cell reorganization and capillary morphogenesis in vitro. A homology cloning approach targeting conserved motifs present in all serine proteases, was used to identify candidate serine proteases involved in these processes, and revealed 5 genes (acrosin, testisin, neurosin, PSP and neurotrypsin), none of which had been associated previously with expression in endothelial cells. A subsequent gene-specific RT-PCR screen for 22 serine proteases confirmed expression of these 5 genes and identified 7 additional serine protease genes expressed by human endothelial cells, urokinase-type plasminogen activator, protein C,TMPRSS2, hepsin, matriptase/ MT-SPI, dipepticlylpepticlase IV, and seprase. Differences in serine protease gene expression between microvascular and human umbilical vein endothelial cells (HUVECs) were identified and several serine protease genes were found to be regulated by the nature of the substratum, ie. artificial basement membrane or fibrillar type I collagen. mRNA transcripts of several serine protease genes were associated with blood vessels in vivo by in situ hybridization of human tissue specimens. These data suggest a potential role for serine proteases, not previously associated with endothelium, in vascular function and angiogenesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Plasma leaking from damaged retinal blood vessels can have a significant impact on the pathologies of the posterior segment of the eye. Inflammation in the eye and metabolic change resulting from diabetes mellitus causes vascular leakage with alteration of the phenotype of retinal pigment epithelial (RPE) cells and fibrocytes, resulting in changes in cell function. Phenotypically altered cells then significantly contribute to the pathogenesis of retinopathies by being incorporated into tractional membranes in the vitreous, where they secrete matrix molecules, such as fibronectin, and express altered cell surface antigens. We hypothesize that there is a direct relationship between the leaking of plasma and the proliferation and phenotypic change of RPE cells and fibroblasts, thus exacerbating the pathology of retinal disease. If the hypothesis is correct, control of vascular leakage becomes an important target of therapy in proliferative vitreoretinopathy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: The aim of this study was to determine whether heparan sulfate proteoglycans (HSPGs) from the normal arterial wall inhibit neointimal formation after injury in vivo and smooth muscle cell (SMC) phenotype change and proliferation in vitro. Methods: Arterial HSPGs were extracted from rabbit aortae and separated by anion-exchange chromatography. The effect of HSPGs, applied in a periadventitial gel, on neointimal formation was assessed 14 days after balloon catheter injury of rabbit carotid arteries. Their effect on SMC phenotype and proliferation was measured by point-counting morphometry of the cytoplasmic volume fraction of myofilaments (Vvmyo) and H-3-thymidine incorporation in SMCs in culture. Results: Arterial HSPGs (680 mu g) reduced neointimal formation by 35% at 14 days after injury (P =.029), whereas 2000 mu g of the low-molecular-weight heparin Enoxaparin was ineffective. HSPGs at 34 mu g/mL maintained subconfluent primary cultured SMCs with the same high Vvmyo (52.1% +/- 13.8%) after 5 days in culture as did cells freshly isolated from the arterial wall (52.1% +/- 15.1%). In contrast, 100 mu g/mL Enoxaparin was ineffective in preventing phenotypic change over this time period (Vvmyo 38.9% +/- 14.6%, controls 35.9% +/- 12.8%). HSPGs also inhibited 3H-thymidine incorporation into primary cultured SMCs with an ID50 value of 0.4 mu g/mL compared with a value of 14 mu g/ml; for Enoxaparin (P

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background and Purpose - Epidemiological and laboratory studies suggest that increasing concentrations of plasma homocysteine ( total homocysteine [tHcy]) accelerate cardiovascular disease by promoting vascular inflammation, endothelial dysfunction, and hypercoagulability. Methods - We conducted a randomized controlled trial in 285 patients with recent transient ischemic attack or stroke to examine the effect of lowering tHcy with folic acid 2 mg, vitamin B-12 0.5 mg, and vitamin B-6 25 mg compared with placebo on laboratory markers of vascular inflammation, endothelial dysfunction, and hypercoagulability. Results - At 6 months after randomization, there was no significant difference in blood concentrations of markers of vascular inflammation (high-sensitivity C-reactive protein [P = 0.32]; soluble CD40L [ P = 0.33]; IL-6 [P = 0.77]), endothelial dysfunction ( vascular cell adhesion molecule-1 [P = 0.27]; intercellular adhesion molecule-1 [P = 0.08]; von Willebrand factor [P = 0.92]), and hypercoagulability (P-selectin [P = 0.33]; prothrombin fragment 1 and 2 [P = 0.81]; D-dimer [P = 0.88]) among patients assigned vitamin therapy compared with placebo despite a 3.7-mumol/L (95% CI, 2.7 to 4.7) reduction in total homocysteine (tHcy). Conclusions - Lowering tHcy by 3.7 mumol/L with folic acid-based multivitamin therapy does not significantly reduce blood concentrations of the biomarkers of inflammation, endothelial dysfunction, or hypercoagulability measured in our study. The possible explanations for our findings are: ( 1) these biomarkers are not sensitive to the effects of lowering tHcy (eg, multiple risk factor interventions may be required); ( 2) elevated tHcy causes cardiovascular disease by mechanisms other than the biomarkers measured; or ( 3) elevated tHcy is a noncausal marker of increased vascular risk.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pulmonary vascular remodeling is an important pathological feature of pulmonary hypertension, leading to increased pulmonary vascular resistance and reduced compliance. It involves thickening of all three layers of the blood vessel wall (due to hypertrophy and/or hyperplasia of the predominant cell type within each layer), as well as extracellular matrix deposition. Neomuscularisation of non-muscular arteries and formation of plexiform and neointimal lesions also occur. Stimuli responsible for remodeling involve transmural pressure, stretch, shear stress, hypoxia, various mediators [angiotensin II, endothelin (ET)-1, 5-hydroxytryptamine, growth factors, and inflammatory cytokines], increased serine elastase activity, and tenascin-C. In addition, there are reductions in the endothelium-derived antimitogenic substances, nitric oxide, and prostacyclin. Intracellular signalling mechanisms involved in pulmonary vascular remodeling include elevations in intracellular Ca2+ and activation of the phosphatidylinositol pathway, protein kinase C, and mitogen-activated protein kinase. In animal models of pulmonary hypertension, various drugs have been shown to attenuate pulmonary vascular remodeling. These include angiotensin-converting enzyme inhibitors, angiotensin receptor antagonists, ET receptor antagonists, ET-converting enzyme inhibitors, nitric oxide, phosphodiesterase 5 inhibitors, prostacyclin, Ca2+-channel antagonists, heparin, and serine elastase inhibitors. Inhibition of remodeling is generally accompanied by reductions in pulmonary artery pressure. The efficacy of some of the drugs varies, depending on the animal model of the disease. In view of the complexity of the remodeling process and the diverse aetiology of pulmonary hypertension in humans, it is to be anticipated that successful anti-remodeling therapy in the clinic will require a range of different drug options. (C) 2001 Elsevier Science Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In pulmonary hypertension, changes in pulmonary vascular structure and function contribute to the elevation in pulmonary artery pressure. The time-courses for changes in function, unlike structure, are not well characterised. Medial hypertrophy and neomuscularisation and reactivity to vasoactive agents were examined in parallel in main and intralobar pulmonary arteries and salt-perfused lungs from rats exposed to hypoxia (10% O-2) for 1 and 4 weeks (early and established pulmonary hypertension, respectively). After 1 week of hypoxia, in isolated main and intralobar arteries, contractions to 5-hydroxytryptamine and U46619 (thromboxane-mimetic) were increased whereas contractions to angiotensins I and II and relaxations to acetylcholine were reduced. These alterations varied quantitatively between main and intralobar arteries and, in many instances, regressed between 1 and 4 weeks. The alterations in reactivity did not necessarily link chronologically with alterations in structure. In perfused lungs, constrictor responses to acute alveolar hypoxia were unchanged after 1 week but were increased after 4 weeks, in conjunction with the neomuscularisation of distal alveolar arteries. The data suggest that in hypoxic pulmonary hypertension, the contribution of altered pulmonary vascular reactivity to the increase in pulmonary artery pressure may be particularly important in the early stages of the disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background Early atherosclerosis involves the endothelium of many arteries. Information about peripheral arterial anatomy and function derived from vascular imaging studies such as brachial artery reactivity (BAR) and carotid intima media thickness (IMT) may be pertinent to the coronary circulation. The prevention and early treatment of atherosclerosis is gaining more attention, and these tests might be used as indications or perhaps guides to the effectiveness of therapy, but their application in clinical practice has been limited. This review seeks to define the anatomy and pathophysiology underlying these investigations, their methodology, the significance of their Findings, and the issues that must be resolved before their application. Methods The literature on BAR and IMT is extensively reviewed, especially in relation to clinical use. Results Abnormal flow-mediated dilation is present in atherosclerotic vessels, is associated with cardiovascular risk factors, and may be a marker of preclinical disease. Treatment of known atherosclerotic risk Factors has been shown to improve flow-mediated dilation, and some data suggest that vascular responsiveness is related to outcome. Carotid IMT is associated with cardiovascular risk factors, and increased levels can predict myocardial infarction and stroke. Aggressive risk factor management can decrease IMT. Conclusions BAR and IMT ate functional and structural markers of the atherosclerotic process. The clinical use of BAR has been limited by varying reproducibility and the influence by exogenous factors, but IMT exhibits less variability. A desirable next step in the development of BAR and IMT as useful clinical tools would be to show an association of improvement in response to treatment with improvement in prognosis.