21 resultados para Uniquely ergodic
Resumo:
Targeting between-species effects for improvement in synthetic hybrid populations derived from outcrossing parental tree species may be one way to increase the efficacy and predictability of hybrid breeding. We present a comparative analysis of the quantitative trait loci (QTL) which resolved between from within-species effects for adventitious rooting in two populations of hybrids between Pinus elliottii and P. caribaea, an outbred F-1 (n=287) and an inbred-like F-2 family (n=357). Most small to moderate effect QTL (each explaining 2-5% of phenotypic variation, PV) were congruent (3 out of 4 QTL in each family) and therefore considered within-species effects as they segregated in both families. A single large effect QTL (40% PV) was detected uniquely in the F-2 family and assumed to be due to a between-species effect, resulting from a genetic locus with contrasting alleles in each parental species. Oligogenic as opposed to polygenic architecture was supported in both families (60% and 20% PV explained by 4 QTL in the F-2 and F-1 respectively). The importance of adventitious rooting for adaptation to survive water-logged environments was thought in part to explain oligogenic architecture of what is believed to be a complex trait controlled by many hundreds of genes.
Resumo:
In order to quantify quantum entanglement in two-impurity Kondo systems, we calculate the concurrence, negativity, and von Neumann entropy. The entanglement of the two Kondo impurities is shown to be determined by two competing many-body effects, namely the Kondo effect and the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction, I. Due to the spin-rotational invariance of the ground state, the concurrence and negativity are uniquely determined by the spin-spin correlation between the impurities. It is found that there exists a critical minimum value of the antiferromagnetic correlation between the impurity spins which is necessary for entanglement of the two impurity spins. The critical value is discussed in relation with the unstable fixed point in the two-impurity Kondo problem. Specifically, at the fixed point there is no entanglement between the impurity spins. Entanglement will only be created [and quantum information processing (QIP) will only be possible] if the RKKY interaction exchange energy, I, is at least several times larger than the Kondo temperature, T-K. Quantitative criteria for QIP are given in terms of the impurity spin-spin correlation.
Resumo:
Theory of mind (ToM) was examined in late-signing deaf children in two studies by using standard tests and measures of spontaneous talk about inner states of perception, affect and cognition during storytelling. In Study 1, there were 21 deaf children aged 6 to 11 years and 13 typical-hearing children matched with the deaf by chronological age. In Study 2, there were 17 deaf children aged 6 to 12 years and 17 typical-hearing preschoolers aged 4 to 5 years who were matched with the deaf by ToM test performance. In addition to replicating the consistently reported finding of poor performance on standard false belief tests by late-signing deaf children, significant correlations emerged in both studies between deaf children's ToM test scores and their spontaneous narrative talk about imaginative cognition (e.g. 'pretend'). In Study 2, with a new set of purpose-built pictures that evoked richer and more complex mentalistic narration than the published picture book of Study 1, results of multiple regression analyses showed that children's narrative talk about imaginative cognition was uniquely important, over and above hearing status and talking of other kinds of mental states, in predicting ToM scores. The same was true of children's elaborated narrative talk using utterances that either spelt out thoughts, explained inner states or introduced contrastives. In addition, results of a Guttman scalograrn analysis in Study 2 suggested a consistent sequence in narrative and standard test performance by deaf and hearing children that went from (1) narrative mention of visible (affective or perceptual) mental states only, along with FB failure, to (2) narrative mention of cognitive states along with (1), to (3) elaborated narrative talk about inner states along with (2), and finally to (4) simple and elaborated narrative talk about affective/perceptual and cognitive states along with FIB test success. Possible explanations for this performance ordering, as well as for the observed correlations in both studies between ToM test scores and narrative variables, were considered.
Resumo:
It is shown that in some cases it is possible to reconstruct a block design D uniquely from incomplete knowledge of a minimal defining set for D. This surprising result has implications for the use of minimal defining sets in secret sharing schemes.
Resumo:
The convergent beam Kikuchi line diffraction technique has been used to accurately determine the orientation relationships between bainitic ferrite and retained austenite in a hard bainitic steel. A reproducible orientation relationship has been uniquely observed for both the upper and lower bainite. It is [GRAPHICS] However, the habit plane of upper bainite is different from that of lower bainite. The former has habit plane that is either within 5 degrees of (221)(A) or of (259)(A). The latter only corresponds with a habit plane that is within 5 degrees of (259)(A). The determined orientation relationship is completely consistent with reported results determined using the same technique with an accuracy of +/- 0.5 degrees in lath martensite in an Fe-20 wt.% Ni-6 wt.% Mn alloy and in a low carbon low alloy steel. It also agrees well with the orientation relationship between granular bainite and austenite in an Fe-19 wt.% Ni-3.5 wt.% Mn-0.15 wt.% C steel. Hence it is believed that, at least from a crystallographic point view, the bainite transformation has the characteristics of martensitic transformation. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
In this study, 3-D Lattice Solid Model (LSMearth or LSM) was extended by introducing particle-scale rotation. In the new model, for each 3-D particle, we introduce six degrees of freedom: Three for translational motion, and three for orientation. Six kinds of relative motions are permitted between two neighboring particles, and six interactions are transferred, i.e., radial, two shearing forces, twisting and two bending torques. By using quaternion algebra, relative rotation between two particles is decomposed into two sequence-independent rotations such that all interactions due to the relative motions between interactive rigid bodies can be uniquely decided. After incorporating this mechanism and introducing bond breaking under torsion and bending into the LSM, several tests on 2-D and 3-D rock failure under uni-axial compression are carried out. Compared with the simulations without the single particle rotational mechanism, the new simulation results match more closely experimental results of rock fracture and hence, are encouraging. Since more parameters are introduced, an approach for choosing the new parameters is presented.