25 resultados para Two-dimensional electrophoresis (2-DE)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this Erratum, we point out the reason for an error in the derivation of a result in our earlier paper, “Two-Dimensional Failure Modeling with Minimal Repair” [1], which appeared in the April 2004 issue of this journal, 51:3, on pages 345–362, and give the correct derivation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Molecular interactions between microcrystalline cellulose (MCC) and water were investigated by attenuated total reflection infrared (ATR/IR) spectroscopy. Moisture-content-dependent IR spectra during a drying process of wet MCC were measured. In order to distinguish overlapping O–H stretching bands arising from both cellulose and water, principal component analysis (PCA) and, generalized two-dimensional correlation spectroscopy (2DCOS) and second derivative analysis were applied to the obtained spectra. Four typical drying stages were clearly separated by PCA, and spectral variations in each stage were analyzed by 2DCOS. In the drying time range of 0–41 min, a decrease in the broad band around 3390 cm−1 was observed, indicating that bulk water was evaporated. In the drying time range of 49–195 min, decreases in the bands at 3412, 3344 and 3286 cm−1 assigned to the O6H6cdots, three dots, centeredO3′ interchain hydrogen bonds (H-bonds), the O3H3cdots, three dots, centeredO5 intrachain H-bonds and the H-bonds in Iβ phase in MCC, respectively, were observed. The result of the second derivative analysis suggests that water molecules mainly interact with the O6H6cdots, three dots, centeredO3′ interchain H-bonds. Thus, the H-bonding network in MCC is stabilized by H-bonds between OH groups constructing O6H6cdots, three dots, centeredO3′ interchain H-bonds and water, and the removal of the water molecules induces changes in the H-bonding network in MCC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Adiponectin is a secreted, multimeric protein with insulin-sensitizing, antiatherogenic, and antiinflammatory properties. Serum adiponectin consists of trimer, hexamer, and larger high-molecular-weight (HMW) multimers, and these HMW multimers appear to be the more bioactive forms. Multimer composition of adiponectin appears to be regulated; however, the molecular mechanisms involved are unknown. We hypothesize that regulation of adiponectin multimerization and secretion occurs via changes in posttranslational modifications (PTMs). Although a structural role for intertrimer disulfide bonds in the formation of hexamers and HMW multimers is established, the role of other PTMs is unknown. PTMs identified in murine and bovine adiponectin include hydroxylation of multiple conserved proline and lysine residues and glycosylation of hydroxylysines. By mass spectrometry, we confirmed the presence of these PTMs in human adiponectin and identified three additional hydroxylations on Pro71, Pro76, and Pro95. We also investigated the role of the five modified lysines in multimer formation and secretion of recombinant human adiponectin expressed in mammalian cell lines. Mutation of modified lysines in the collagenous domain prevented formation of HMW multimers, whereas a pharmacological inhibitor of prolyl- and lysyl-hydroxylases, 2,2'-dipyridyl, inhibited formation of hexamers and HMW multimers. Bacterially expressed human adiponectin displayed a complete lack of differentially modified isoforms and failed to form bona fide trimers and larger multimers. Finally, glucose-induced increases in HMW multimer production from human adipose explants correlated with changes in the two-dimensional electrophoresis profile of adiponectin isoforms. Collectively, these data suggest that adiponectin multimer composition is affected by changes in PTM in response to physiological factors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Alcoholism results in changes in the human brain that reinforce the cycle of craving and dependency, and these changes are manifest in the pattern of expression of proteins in key cells and brain areas. Described here is a proteomics-based approach aimed at determining the identity of proteins in the superior frontal cortex (SFC) of the human brain that show different levels of expression in autopsy samples taken from healthy and long-term alcohol abuse subjects. Soluble protein fractions constituting pooled samples combined from SFC biopsies of four well-characterized chronic alcoholics (mean consumption > 80 g ethanol/day throughout adulthood) and four matched controls (< 20 g/day) were generated. Two-dimensional electrophoresis was performed in triplicate on alcoholic and control samples and the resultant protein profiles analyzed for differential expression. Overall, 182 proteins differed by the criterion of twofold or more between case and control samples. Of these, 139 showed significantly lower expression in alcoholics, 35 showed significantly higher expression, and 8 were new or had disappeared. To date, 63 proteins have been identified using MALDI-MS and MS-MS. The finding that the expression level of differentially expressed proteins is preponderantly lower in the alcoholic brain is supported by recent results from parallel studies using microarray mRNA transcript.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The proteome of bovine milk is dominated by just six gene products that constitute approximately 95% of milk protein. Nonetheless, over 150 protein spots can be readily detected following two-dimensional electrophoresis of whole milk. Many of these represent isoforms of the major gene products produced through extensive posttranslational modification. Peptide mass fingerprinting of in-gel tryptic digests (using matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) in reflectron mode with alpha-cyano-4-hydroxycinnamic acid as the matrix) identified 10 forms of K-casein with isoelectric point (pl) values from 4.47 to 5.81, but could not distinguish between them. MALDI-TOF MS in linear mode, using sinapinic acid as the matrix, revealed a large tryptic peptide (mass > 5990 Da) derived from the C-terminus that contained all the known sites of genetic variance, phosphorylation and glycosylation. Two genetic variants present as singly or doubly phosphorylated forms could be distinguished using mass data alone. Glycoforms containing a single acidic tetrasaccharide were also identified. The differences in electrophoretic mobility of these isoforms were consistent with the addition of the acidic groups. While more extensively glycosylated forms were also observed, substantial loss of N-acetylneuraminic acid from the glycosyl group was evident in the MALDI spectra such that ions corresponding to the intact glycopeptide were not observed and assignment of the glycoforms was not possible. However, by analysing the pl shifts observed on the two-dimensional gels in conjunction with the MS data, the number of N-acetylneuraminic acid residues, and hence the glycoforms present, could be determined.