27 resultados para Tumor Suppressor Protein p53 -- biosynthesis
Resumo:
Mutations of the MEN1 gene, encoding the tumor suppressor menin, predispose individuals to the cancer syndrome multiple endocrine neoplasia type 1, characterized by the development of tumors of the endocrine pancreas and anterior pituitary and parathyroid glands. We have targeted the murine Men1 gene by using Cre recombinase-loxP technology to develop both total and tissue-specific knockouts of the gene. Conditional homozygous inactivation of the Men1 gene in the pituitary gland and endocrine pancreas bypasses the embryonic lethality associated with a constitutional Men1(-/-) genotype and leads to beta-cell hyperplasia in less than 4 months and insulinomas and prolactinomas starting at 9 months. The pituitary gland and pancreas develop normally in the conditional absence of menin, but loss of this transcriptional cofactor is sufficient to cause beta-cell hyperplasia in some islets; however, such loss is not sufficient to initiate pituitary gland tumorigenesis, suggesting that additional genetic events are necessary for the latter.
Resumo:
The cadherin superfamily members play an important role in mediating cell-cell contact and adhesion (Takeichi, M., 1991. Cadherin cell adhesion receptors as a morphogenetic regulator. Science 251, 1451-1455). A distinct subfamily, neither belonging to the classical or protocadherins includes Fat, the largest member of the cadherin super-family. Fat was originally identified in Drosophila. Subsequently, orthologues of Fat have been described in man (Dunne, J., Hanby, A. M., Poulsom, R., Jones, T. A., Sheer, D., Chin, W. G., Da, S. M., Zhao, Q., Beverley, P. C., Owen, M. J., 1995. Molecular cloning and tissue expression of FAT, the human homologue of the Drosophila fat gene that is located on chromosome 4q34-q35 and encodes a putative adhesion molecule. Genomics 30, 207-223), rat (Ponassi, M., Jacques, T. S., Ciani, L., ffrench, C. C., 1999. Expression of the rat homologue of the Drosophila fat tumour suppressor gene. Mech. Dev. 80, 207-212) and mouse (Cox, B., Hadjantonakis, A. K., Collins, J. E., Magee, A. I., 2000. Cloning and expression throughout mouse development of mfat 1, a homologue of the Drosophila tumour suppressor gene fat [In Process Citation]. Dev. Dyn. 217, 233-240). In Drosophila, Fat has been shown to play an important role in both planar cell polarity and cell boundary formation during development. In this study we describe the characterization of zebrafish Fat, the first non-mammalian, vertebrate Fat homologue to be identified. The Fat protein has 64% amino acid identity and 80% similarity to human FAT and an identical domain structure to other vertebrate Fat proteins. During embryogenesis fat mRNA is expressed in the developing brain, specialised epithelial surfaces the notochord, ears, eyes and digestive tract, a pattern similar but distinct to that found in mammals. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Targeted inhibition of oncogenes in tumor cells is a rational approach toward the development of cancer therapies based on RNA interference (RNAi). Tumors caused by human papillomavirus (HPV) infection are an ideal model system for RNAi-based cancer therapies because the oncogenes that cause cervical cancer, E6 and E7, are expressed only in cancerous cells. We investigated whether targeting HPV E6 and E7 oncogenes yields cancer cells more sensitive to chemotherapy by cisplatin, the chemotherapeutic agent currently used for the treatment of advanced cervical cancer. We have designed siRNAs directed against the HPV E6 oncogene that simultaneously targets both E6 and E7, which results in an 80% reduction in E7 protein and reactivation of the p53 pathway. The loss of E6 and E7 resulted in a reduction in cellular viability concurrent with the induction of cellular senescence. Interference was specific in that no effect on HPV-negative cells was observed. We demonstrate that RNAi against E6 and E7 oncogenes enhances the chemotherapeutic effect of cisplatin in HeLa cells. The IC50 for HeLa cells treated with cisplatin was 9.4 mu M, but after the addition of a lentivirus-delivered shRNA against E6, the IC50 was reduced almost 4-fold to 2.4 mu M. We also observed a decrease in E7 expression with a concurrent increase in p53 protein levels upon cotreatment with shRNA and cisplatin over that seen with individual treatment alone. Our results provide strong evidence that loss of E6 and E7 results in increased sensitivity to cisplatin, probably because of increased p53 levels.
Resumo:
BRCA1 is a tumor suppressor that functions in controlling cell growth and maintaining genomic stability. BRCA1 has also been implicated in telomere maintenance through its ability to regulate the transcription of hTERT, the catalytic subunit of telomerase, resulting in telomere shortening, and to colocalize with the telomere-binding protein TRF1. The high incidence of nonreciprocal translocations in tumors arising from BRCA1 mutation carriers and Brca1-null mice also raises the possibility that BRCA1 plays a role in telomere protection. To date, however, the consequences for telomere status of disrupting BRCA1 have not been reported. To examine the role of BRCA1 in telomere regulation, we have expressed a dominant-negative mutant of BRCA1 (trBRCA1), known to disrupt multiple functions of BRCA1, in telomerase-positive mammary epithelial cells (SVCT) and telomerase-negative ALT cells (GM847). In SVCT cells, expression of trBRCA1 resulted in an increased incidence of anaphase bridges and in an increase in telomere length, but no change in telomerase activity. In GM847 cells, trBRCA1 also increased anaphase bridge formation but did not induce any change in telomere length. BRCA1 colocalized with TRF2 in telomerase-positive cells and with a small subset of ALT-associated PML bodies (APBs) in ALT cells. Together, these results raise the possibility that BRCA1 could play a role in telomere protection and suggest a potential mechanism for one of the phenotypes of BRCA1 deficient cells. (c) 2005 Wiley-Liss, Inc.
Resumo:
Introduction: Mutation testing for the MEN1 gene is a useful method to diagnose and predict individuals who either have or will develop multiple endocrine neoplasia type 1 ( MEN 1). Clinical selection criteria to identify patients who should be tested are needed, as mutation analysis is costly and time consuming. This study is a report of an Australian national mutation testing service for the MEN1 gene from referred patients with classical MEN 1 and various MEN 1- like conditions. Results: All 55 MEN1 mutation positive patients had a family history of hyperparathyroidism, had hyperparathyroidism with one other MEN1 related tumour, or had hyperparathyroidism with multiglandular hyperplasia at a young age. We found 42 separate mutations and six recurring mutations from unrelated families, and evidence for a founder effect in five families with the same mutation. Discussion: Our results indicate that mutations in genes other than MEN1 may cause familial isolated hyperparathyroidism and familial isolated pituitary tumours. Conclusions: We therefore suggest that routine germline MEN1 mutation testing of all cases of classical'' MEN1, familial hyperparathyroidism, and sporadic hyperparathyroidism with one other MEN1 related condition is justified by national testing services. We do not recommend routine sequencing of the promoter region between nucleotides 1234 and 1758 ( Genbank accession no. U93237) as we could not detect any sequence variations within this region in any familial or sporadic cases of MEN1 related conditions lacking a MEN1 mutation. We also suggest that testing be considered for patients < 30 years old with sporadic hyperparathyroidism and multigland hyperplasia
Resumo:
Endometriosis is a common gynecological disease that affects up to 10% of women in their reproductive years. It causes pelvic pain, severe dysmenorrhea, and subfertility. The disease is defined as the presence of tissue resembling endometrium in sites outside the uterus. Its cause remains uncertain despite 150 years of hypothesis-driven research, and thus the therapeutic options are limited. Disease predisposition is inherited as a complex genetic trait, which provides an alternative route to understanding the disease. We seek to identify susceptibility loci, using a positional-cloning approach that starts with linkage analysis to identify genomic regions likely to harbor these genes. We conducted a linkage study of 1,176 families ( 931 from an Australian group and 245 from a U. K. group), each with at least two members-mainly affected sister pairs-with surgically diagnosed disease. We have identified a region of significant linkage on chromosome 10q26 ( maximum LOD score [MLS] of 3.09; genomewide P = .047) and another region of suggestive linkage on chromosome 20p13 MLS p 2.09). Minor peaks with MLS > 1.0) were found on chromosomes 2, 6, 7, 8, 12, 14, 15, and 17. This is the first report of linkage to a major locus for endometriosis. The findings will facilitate discovery of novel positional genetic variants that influence the risk of developing this debilitating disease. Greater understanding of the aberrant cellular and molecular mechanisms involved in the etiology and pathophysiology of endometriosis should lead to better diagnostic methods and targeted treatments.
Resumo:
Mutations in the Hedgehog receptor, Patched 1 (Ptch1), have been linked to both familial and sporadic forms of basal cell carcinoma (BCC), leading to the hypothesis that loss of Ptch1 function is sufficient for tumor progression. By combining conditional knockout technology with the inducible activity of the Keratin6 promoter, we provide in vivo evidence that loss of Ptch1 function from the basal cell population of mouse skin is sufficient to induce rapid skin tumor formation, reminiscent of human BCC. Elimination of Ptch1 does not promote the nuclear translocation of beta-catenin and does not induce ectopic activation or expression of Notch pathway constituents. In the absence of Ptch1, however, a large proportion of basal cells exhibit nuclear accumulation of the cell cycle regulators cyclin D1 and B1. Collectively, our data suggest that Ptch1 likely functions as a tumor suppressor by inhibiting G(1)-S phase and G(2)-M phase cell cycle progression, and the rapid onset of tumor progression clearly indicates Ptch1 functions as a gatekeeper. In addition, we note the high frequency and rapid onset of tumors in this mouse model makes it an ideal system for testing therapeutic strategies, such as Patched pathway inhibitors.
Resumo:
RNA interference (RNAi) is widely used to silence genes in plants and animals. it operates through the degradation of target mRNA by endonuclease complexes guided by approximately 21 nucleotide (nt) short interfering RNAs (siRNAs). A similar process regulates the expression of some developmental genes through approximately 21 nt microRNAs. Plants have four types of Dicer-like (DCL) enzyme, each producing small RNAs with different functions. Here, we show that DCL2, DCL3 and DCL4 in Arabidopsis process both replicating viral RNAs and RNAi-inducing hairpin RNAs (hpRNAs) into 22-, 24- and 21 nt siRNAs, respectively, and that loss of both DCL2 and DCL4 activities is required to negate RNAi and to release the plant's repression of viral replication. We also show that hpRNAs, similar to viral infection, can engender long-distance silencing signals and that hpRNA-induced silencing is suppressed by the expression of a virus-derived suppressor protein. These findings indicate that hpRNA-mediated RNAi in plants operates through the viral defence pathway.
Resumo:
TSLC1 (tumor suppressor in lung cancer-1, IGSF4) encodes a member of the immunoglobulin superfamily molecules, which is involved in cell-cell adhesion. TSLC1 is connected to the actin cytoskeleton by DAL-1 (differentially expressed in adenocarcinoma of the lung-1, EPB41L3) and it directly associates with MPP3, one of the human homologues of a Drosophila tumor suppressor gene, Discs large. Recent data suggest that aberrant promoter methylation is important for TSLC1 inactivation in lung carcinomas. However, little is known about the other two genes in this cascade, DAL-1 and MPP3. Thus, we investigated the expression and methylation patterns of these genes in lung cancer cell lines, primary lung carcinomas and nonmalignant lung tissue samples. By reverse transcription-polymerase chain reaction, loss of TSLC1 expression was observed in seven of 16 (44%) non-small-cell lung cancer (NSCLC) cell lines and in one of 11 (9%) small-cell lung cancer (SCLC) cell lines, while loss of DAL- 1 expression was seen in 14 of 16 (87%) NSCLC cell lines and in four of 11 (36%) SCLC cell lines. By contrast, MPP3 expression was found in all tumor cell lines analysed. Similar results were obtained by microarray analysis. TSLC1 methylation was seen in 13 of 39 (33%) NSC LC cell lines, in one of 11 (9%) SCLC cell lines and in 100 of 268 (37%) primary NSCLCs. DAL-1 methylation was observed in 17 of 39 (44%) NSCLC cell lines, in three of 11 (27%) SCLC cell lines and in 147 of 268 (55%) primary NSCLCs. In tumors of NSCLC patients with stage II-III disease, DAL-1 methylation was seen at a statistically significant higher frequency compared to tumors of patients with stage I disease. A significant correlation between loss of expression and methylation of the genes in lung cancer cell lines was found. Overall, 65% of primary NSCLCs had either TSLC1 or DAL-1 methylated. Methylation of one of these genes was detected in 59% of NSCLC cell lines; however, in SCLC cell lines, methylation was much less frequently observed. The majority of nonmalignant lung tissue samples was not TSLC1 and DAL-1 methylated. Re-expression of TSLC1 and DAL-1 was seen after treatment of lung cancer cell lines with 5-aza-2$-deoxy-cytidine. Our results suggest that methylation of TSLC1 and/or DAL-1, leading to loss of their expression, is an important event in the pathogenesis of NSCLC.
Resumo:
The Suppressor of UnderReplication (SuUR) gene controls the DNA underreplication in intercalary and pericentric heterochromatin of Drosophila melanogaster salivary gland polytene chromosomes. In the present work, we investigate the functional importance of different regions of the SUUR protein by expressing truncations of the protein in an UAS-GAL4 system. We find that SUUR has at least two separate chromosome-binding regions that are able to recognize intercalary and pericentric heterochromatin specifically. The C-terminal part controls DNA underreplication in intercalary heterochromatin and partially in pericentric heterochromatin regions. The C-terminal half of SUUR suppresses endoreplication when ectopically expressed in the salivary gland. Ectopic expression of the N-terminal fragments of SUUR depletes endogenous SUUR from polytene chromosomes, causes the SuUR(-) stopphenotype and induces specific swellings in heterochromatin.