49 resultados para Transformer voltage equations
Inverse parabolicity of PDF equations in turbulent flows - reversed-time diffusion or something else
Resumo:
In this paper we present the composite Euler method for the strong solution of stochastic differential equations driven by d-dimensional Wiener processes. This method is a combination of the semi-implicit Euler method and the implicit Euler method. At each step either the semi-implicit Euler method or the implicit Euler method is used in order to obtain better stability properties. We give criteria for selecting the semi-implicit Euler method or the implicit Euler method. For the linear test equation, the convergence properties of the composite Euler method depend on the criteria for selecting the methods. Numerical results suggest that the convergence properties of the composite Euler method applied to nonlinear SDEs is the same as those applied to linear equations. The stability properties of the composite Euler method are shown to be far superior to those of the Euler methods, and numerical results show that the composite Euler method is a very promising method. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Ussing [1] considered the steady flux of a single chemical component diffusing through a membrane under the influence of chemical potentials and derived from his linear model, an expression for the ratio of this flux and that of the complementary experiment in which the boundary conditions were interchanged. Here, an extension of Ussing's flux ratio theorem is obtained for n chemically interacting components governed by a linear system of diffusion-migration equations that may also incorporate linear temporary trapping reactions. The determinants of the output flux matrices for complementary experiments are shown to satisfy an Ussing flux ratio formula for steady state conditions of the same form as for the well-known one-component case. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
In this paper we discuss implicit Taylor methods for stiff Ito stochastic differential equations. Based on the relationship between Ito stochastic integrals and backward stochastic integrals, we introduce three implicit Taylor methods: the implicit Euler-Taylor method with strong order 0.5, the implicit Milstein-Taylor method with strong order 1.0 and the implicit Taylor method with strong order 1.5. The mean-square stability properties of the implicit Euler-Taylor and Milstein-Taylor methods are much better than those of the corresponding semi-implicit Euler and Milstein methods and these two implicit methods can be used to solve stochastic differential equations which are stiff in both the deterministic and the stochastic components. Numerical results are reported to show the convergence properties and the stability properties of these three implicit Taylor methods. The stability analysis and numerical results show that the implicit Euler-Taylor and Milstein-Taylor methods are very promising methods for stiff stochastic differential equations.
Resumo:
We establish existence results for solutions to three-point boundary value problems for nonlinear, second-order, ordinary differential equations with nonlinear boundary conditions. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
In this paper we discuss implicit methods based on stiffly accurate Runge-Kutta methods and splitting techniques for solving Stratonovich stochastic differential equations (SDEs). Two splitting techniques: the balanced splitting technique and the deterministic splitting technique, are used in this paper. We construct a two-stage implicit Runge-Kutta method with strong order 1.0 which is corrected twice and no update is needed. The stability properties and numerical results show that this approach is suitable for solving stiff SDEs. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
A new method to extract MOSFET's threshold voltage VT by measurement of the gate-to-substrate capacitance C-gb of the transistor is presented. Unlike existing extraction methods based on I-V data, the measurement of C-gb does not require de drain current to now between drain and source thus eliminating the effects of source and drain series resistance R-S/D, and at the same time, retains a symmetrical potential profile across the channel. Experimental and simulation results on devices with different sizes are presented to justify the proposed method.
Resumo:
This study compared the effects of zinc and odorants on the voltage-gated K+ channel of rat olfactory neurons. Zinc reduced current magnitude, depolarized the voltage activation curve and slowed activation kinetics without affecting inactivation or deactivation kinetics. Zinc inhibition was potentiated by the NO compound, S-nitroso-cysteine. The pH- and diethylpyrocarbonate-dependence of zinc inhibition suggested that zinc acted by binding to histidine residues. Cysteine residues were eliminated as contributing to the zinc-binding site. The odorants, acetophenone and amyl acetate, also reduced current magnitude, depolarized the voltage activation curve and selectively slowed activation kinetics. Furthermore, the diethylpyrocarbonate- and pH-dependence of odorant inhibition implied that the odorants also bind to histidine residues. Zinc inhibitory potency was dramatically diminished in the presence of odorants, implying competition for a common binding site. These observations indicate that the odorants and zinc share a common inhibitory binding site on the external surface of the voltage-gated K+ channel.
Resumo:
This note gives a theory of state transition matrices for linear systems of fuzzy differential equations. This is used to give a fuzzy version of the classical variation of constants formula. A simple example of a time-independent control system is used to illustrate the methods. While similar problems to the crisp case arise for time-dependent systems, in time-independent cases the calculations are elementary solutions of eigenvalue-eigenvector problems. In particular, for nonnegative or nonpositive matrices, the problems at each level set, can easily be solved in MATLAB to give the level sets of the fuzzy solution. (C) 2002 Elsevier Science B.V. All rights reserved.