30 resultados para Transcriptional repressor
Resumo:
Sulfate plays an essential role in human growth and development, and its circulating levels are maintained by the renal Na+-SO42- cotransporter, NaS1. We previously generated a NaS1 knockout ( Nas1(-/-)) mouse, an animal model for hyposulfatemia, that exhibits reduced growth and liver abnormalities including hepatomegaly. In this study, we investigated the hepatic gene expression profile of Nas1(-/-) mice using oligonucleotide microarrays. The mRNA expression levels of 92 genes with known functional roles in metabolism, cell signaling, cell defense, immune response, cell structure, transcription, or protein synthesis were increased ( n = 51) or decreased ( n = 41) in Nas1(-/-) mice when compared with Nas1(-/-) mice. The most upregulated transcript levels in Nas1(-/-) mice were found for the sulfotransferase genes, Sult3a1 ( approximate to 500% increase) and Sult2a2 ( 100% increase), whereas the metallothionein-1 gene, Mt1, was among the most downregulated genes ( 70% decrease). Several genes involved in lipid and cholesterol metabolism, including Scd1, Acly, Gpam, Elov16, Acsl5, Mvd, Insig1, and Apoa4, were found to be upregulated ( >= 30% increase) in Nas1(+/+) mice. In addition, Nas1(+/+) mice exhibited increased levels of hepatic lipid ( approximate to 16% increase), serum cholesterol ( approximate to 20% increase), and low-density lipoprotein ( approximate to 100% increase) and reduced hepatic glycogen ( approximate to 50% decrease) levels. In conclusion, these data suggest an altered lipid and cholesterol metabolism in the hyposulfatemic Nas1(-/-) mouse and provide new insights into the metabolic state of the liver in Nas1(-/-) mice.
Resumo:
Membrane organization describes the orientation of a protein with respect to the membrane and can be determined by the presence, or absence, and organization within the protein sequence of two features: endoplasmic reticulum signal peptides and alpha-helical transmembrane domains. These features allow protein sequences to be classified into one of five membrane organization categories: soluble intracellular proteins, soluble secreted proteins, type I membrane proteins, type II membrane proteins, and multi- spanning membrane proteins. Generation of protein isoforms with variable membrane organizations can change a protein's subcellular localization or association with the membrane. Application of MemO, a membrane organization annotation pipeline, to the FANTOM3 Isoform Protein Sequence mouse protein set revealed that within the 8,032 transcriptional units ( TUs) with multiple protein isoforms, 573 had variation in their use of signal peptides, 1,527 had variation in their use of transmembrane domains, and 615 generated protein isoforms from distinct membrane organization classes. The mechanisms underlying these transcript variations were analyzed. While TUs were identified encoding all pairwise combinations of membrane organization categories, the most common was conversion of membrane proteins to soluble proteins. Observed within our highconfidence set were 156 TUs predicted to generate both extracellular soluble and membrane proteins, and 217 TUs generating both intracellular soluble and membrane proteins. The differential use of endoplasmic reticulum signal peptides and transmembrane domains is a common occurrence within the variable protein output of TUs. The generation of protein isoforms that are targeted to multiple subcellular locations represents a major functional consequence of transcript variation within the mouse transcriptome.
Resumo:
In previous studies it has been established that resistance to superoxide by Neisseria gonorrhoeae is dependent on the accumulation of Mn(II) ions involving the ABC transporter, MntABC. A mutant strain lacking the periplasmic binding protein component (MntC) of this transport system is hypersensitive to killing by superoxide anion. In this study the mntC mutant was found to be more sensitive to H2O2 killing than the wild-type. Analysis of regulation of MntC expression revealed that it was de-repressed under low Mn(II) conditions. The N. gonorrhoeae mntABC locus lacks the mntR repressor typically found associated with this locus in other organisms. A search for a candidate regulator of mntABC expression revealed a homologue of PerR, a Mn-dependent peroxide-responsive regulator found in Gram-positive organisms. A perR mutant expressed more MntC protein than wild-type, and expression was independent of Mn(II), consistent with a role for PerR as a repressor of mntABC expression. The PerR regulon of N. gonorrhoeae was defined by microarray analysis and includes ribosomal proteins, TonB-dependent receptors and an alcohol dehydrogenase. Both the mntC and perR mutants had reduced intracellular survival in a human cervical epithelial cell model.
Resumo:
Transcriptional regulatory networks govern cell differentiation and the cellular response to external stimuli. However, mammalian model systems have not yet been accessible for network analysis. Here, we present a genome-wide network analysis of the transcriptional regulation underlying the mouse macrophage response to bacterial lipopolysaccharide (LPS). Key to uncovering the network structure is our combination of time-series cap analysis of gene expression with in silico prediction of transcription factor binding sites. By integrating microarray and qPCR time-series expression data with a promoter analysis, we find dynamic subnetworks that describe how signaling pathways change dynamically during the progress of the macrophage LPS response, thus defining regulatory modules characteristic of the inflammatory response. In particular, our integrative analysis enabled us to suggest novel roles for the transcription factors ATF-3 and NRF-2 during the inflammatory response. We believe that our system approach presented here is applicable to understanding cellular differentiation in higher eukaryotes. (c) 2006 Elsevier Inc. All rights reserved.
Resumo:
We recently established that fibroblast growth factor (FGF)-1 promotes adipogenesis of primary human preadipocytes (phPA). In the current report, we have characterized the adipogenic effects of FGF-1 in phPA and also in a human PA strain derived from an individual with Simpson-Golabi-Behmel syndrome (SGBS PA), which exhibit an intrinsic capacity to differentiate with high efficiency. In further studies, we compared these models with the well-characterized murine 3T3-L1 preadipocyte cell line (3T3-L1 PA). FGF-1 up-regulated the adipogenic program in phPA, with increased expression of peroxisome proliferator-activated receptor-gamma in confluent PA prior to induction of differentiation and increased expression of adipocyte markers during differentiation. Moreover, phPA differentiated in the presence of FGF-1 were more insulin responsive and secreted increased levels of adiponectin. FGF-1 treatment of SGBS PA further enhanced differentiation. For the most part, the adipogenic program in phPA paralleled that observed in 3T3-L1 PA; however, we found no evidence of mitotic clonal expansion in the phPA. Finally, we investigated a role for extracellular regulated kinase 1/2 (ERK 1/2) in adipogenesis of phPA. FGF-1 induced robust phosphorylation of ERK1/2 in early differentiation and inhibition of ERK1/2 activity significantly reduced phPA differentiation. These data suggest that FGF-1 treated phPA represent a valuable in vitro model for the study of adipogenesis and insulin action and indicate that ERK1/2 activation is necessary for human adipogenesis in the absence of mitotic clonal expansion.
Resumo:
The adult mammalian brain maintains populations of neural stem cells within discrete proliferative zones. Understanding of the molecular mechanisms regulating adult neural stem cell function is limited. Here, we show that MYST family histone acetyltransferase Querkopf (Qkf, Myst4, Morf)-deficient mice have cumulative defects in adult neurogenesis in vivo, resulting in declining numbers of olfactory bulb interneurons, a population of neurons produced in large numbers during adulthood. Qkf-deficient mice have fewer neural stem cells and fewer migrating neuroblasts in the rostral migratory stream. Qkf gene expression is strong in the neurogenic subventricular zone. A population enriched in multipotent cells can be isolated from this region on the basis of Qkf gene expression. Neural stem cells/progenitor cells isolated from Qkf mutant mice exhibited a reduced self-renewal capacity and a reduced ability to produce differentiated neurons. Together, our data show that Qkf is essential for normal adult neurogenesis.