35 resultados para Traffic Classification
Resumo:
No abstract
Resumo:
Wheel traffic can lead to compaction and degradation of soil physical properties. This study, as part of a study of controlled traffic farming, assessed the impact of compaction from wheel traffic on soil that had not been trafficked for 5 years. A tractor of 40 kN rear axle weight was used to apply traffic at varying wheelslip on a clay soil with varying residue cover to simulate effects of traffic typical of grain production operations in the northern Australian grain belt. A rainfall simulator was used to determine infiltration characteristics. Wheel traffic significantly reduced time to ponding, steady infiltration rate, and total infiltration compared with non-wheeled soil, with or without residue cover. Non-wheeled soil had 4-5 times greater steady infiltration rate than wheeled soil, irrespective of residue cover. Wheelslip greater than 10% further reduced steady infiltration rate and total infiltration compared with that measured for self-propulsion wheeling (3% wheelslip) under residue-protected conditions. Where there was no compaction from wheel traffic, residue cover had a greater effect on infiltration capacity, with steady infiltration rate increasing proportionally with residue cover (R-2 = 0.98). Residue cover, however, had much less effect on infiltration when wheeling was imposed. These results demonstrated that the infiltration rate for the non-wheeled soil under a controlled traffic zero-till system was similar to that of virgin soil. However, when the soil was wheeled by a medium tractor wheel, infiltration rate was reduced to that of long-term cropped soil. These results suggest that wheel traffic, rather than tillage and cropping, might be the major factor governing infiltration. The exclusion of wheel traffic under a controlled traffic farming system, combined with conservation tillage, provides a way to enhance the sustainability of cropping this soil for improved infiltration, increased plant-available water, and reduced runoff-driven soil erosion.
Resumo:
Traffic and tillage effects on runoff and crop performance on a heavy clay soil were investigated over a period of 4 years. Tillage treatments and the cropping program were representative of broadacre grain production practice in northern Australia, and a split-plot design used to isolate traffic effects. Treatments subject to zero, minimum, and stubble mulch tillage each comprised pairs of 90-m 2 plots, from which runoff was recorded. A 3-m-wide controlled traffic system allowed one of each pair to be maintained as a non-wheeled plot, while the total surface area of the other received a single annual wheeling treatment from a working 100-kW tractor. Rainfall/runoff hydrographs demonstrate that wheeling produced a large and consistent increase in runoff, whereas tillage produced a smaller increase. Treatment effects were greater on dry soil, but were still maintained in large and intense rainfall events on wet soil. Mean annual runoff from wheeled plots was 63 mm (44%) greater than that from controlled traffic plots, whereas runoff from stubble mulch tillage plots was 38 mm (24%) greater than that from zero tillage plots. Traffic and tillage effects appeared to be cumulative, so the mean annual runoff from wheeled stubble mulch tilled plots, representing conventional cropping practice, was more than 100 mm greater than that from controlled traffic zero tilled plots, representing best practice. This increased infiltration was reflected in an increased yield of 16% compared with wheeled stubble mulch. Minimum tilled plots demonstrated a characteristic midway between that of zero and stubble mulch tillage. The results confirm that unnecessary energy dissipation in the soil during the traction process that normally accompanies tillage has a major negative effect on infiltration and crop productivity. Controlled traffic farming systems appear to be the only practicable solution to this problem.
Resumo:
The phylogenetic relationships of members of Eudorylini (Diptera: Pipunculidae: Pipunculinae) were explored. Two hundred and fifty-seven species of Eudorylini from all biogeographical regions and all known genera were examined. Sixty species were included in an exemplar-based phylogeny for the tribe. Two new genera are described, Clistoabdominalis and Dasydorylas. The identity of Eudorylas Aczél, the type genus for Eudorylini, has been obscure since its inception. The genus is re-diagnosed and a proposal to stabilize the genus and tribal names is discussed. An illustrated key to the genera of Pipunculidae is presented and all Eudorylini genera are diagnosed. Numerous new generic synonyms are proposed. Moriparia nigripennis Kozánek & Kwon is preoccupied by Congomyia nigripennis Hardy when both are transferred to Claraeola, so Cla. koreana Skevington is proposed as a new name for Mo. nigripennis.
Resumo:
The vascular and bryophyte floras of subantarctic Heard Island were classified using cluster analysis into six vegetation communities: Open Cushion Carpet, Mossy Feldmark, Wet Mixed Herbfield, Coastal Biotic Vegetation, Saltspray Vegetation, and Closed Cushion Carpet. Multidimensional scaling indicated that the vegetation communities were not well delineated but were continua. Discriminant analysis and a classification tree identified altitude, wind, peat depth, bryophyte cover and extent of bare ground, and particle size as discriminating variables. The combination of small area, glaciation, and harsh climate has resulted in reduced vegetation variety in comparison to those subantarctic islands north of the Antarctic Polar Front Zone. Some of the functional groups and vegetation communities found on warmer subantarctic islands are not present on Heard Island, notably ferns and sedges and fernbrakes and extensive mires, respectively.