20 resultados para Track and field.
Resumo:
Coarse-resolution thematic maps derived from remotely sensed data and implemented in GIS play an important role in coastal and marine conservation, research and management. Here, we describe an approach for fine-resolution mapping of land-cover types using aerial photography and ancillary GIs and ground data in a large (100 x 35 km) subtropical estuarine system (Moreton Bay, Queensland, Australia). We have developed and implemented a classification scheme representing 24 coastal (subtidal, intertidal. mangrove, supratidal and terrestrial) cover types relevant to the ecology of estuarine animals, nekton and shorebirds. The accuracy of classifications of the intertidal and subtidal cover types, as indicated by the agreement between the mapped (predicted) and reference (ground) data, was 77-88%, depending on the zone and level of generalization required. The variability and spatial distribution of habitat mosaics (landscape types) across the mapped environment were assessed using K-means clustering and validated with Classification and Regression Tree models. Seven broad landscape types could be distinguished and ways of incorporating the information on landscape composition into site-specific conservation and field research are discussed. This research illustrates the importance and potential applications of fine-resolution mapping for conservation and management of estuarine habitats and their terrestrial and aquatic wildlife. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Rice (Oryza sativa L.) plants are susceptible to low temperature during the young microspore stage, which occurs 10-12 days before heading. Low temperature at this time increases spikelet sterility which can cause massive yield loss. Increasing the cold tolerance of cultivars can reduce yield variability in temperate rice-growing environments. Two experiments were conducted in cold air screenings and two were conducted in cold water screenings to examine genotypic variation for cold tolerance, explore flowering traits related to spikelet sterility, and investigate whether the results reflect the level of cold tolerance determined previously in the field. Cold air screenings imposed day/night temperatures of 27 degrees C/13 degrees C, 25 degrees C/15 degrees C and 32 degrees C/25 degrees C following particle initiation until 50% heading, while cold water screenings maintained a relatively constant 19 degrees C. The variation in the commencement of low air temperature treatment did not have an effect on the level of spikelet sterility, indicating that exposure to low temperature during the young microspore stage was more important than the duration of exposure. Spikelet sterility of common cultivars showed a significant correlation between cold air and cold water screenings (r(2) = 0.63, p < 0.01), cold air and field screenings (r(2) = 0.52, p < 0.01) and cold water and field screenings (r(2) = 0.53, p < 0.01), indicating that cold air and cold water can be used for screening genotypes for low temperature tolerance. HSC55, M 103 and Jyoudeki were identified as cold tolerant and Doongara, Sasanishiki and Nipponbare as susceptible cultivars. There was a significant negative relationship between spikelet sterility and both the number of engorged pollen grains per anther and anther area only after imposing cold air and cold water treatment hence, it was concluded that these flowering traits were facultative in nature. In addition, cultivars originating from Australia and California were inefficient at producing filled grain with similar sized anthers containing a similar number of engorged pollen grains as cultivars from other origins. One suggested reason for this poor conversion to filled grain of cultivars from Australia and California may be associated with their small stigma area, particularly when exposed to low temperature conditions. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Brugada syndrome (BS) is a genetic disease identified by an abnormal electrocardiogram ( ECG) ( mainly abnormal ECGs associated with right bundle branch block and ST-elevation in right precordial leads). BS can lead to increased risk of sudden cardiac death. Experimental studies on human ventricular myocardium with BS have been limited due to difficulties in obtaining data. Thus, the use of computer simulation is an important alternative. Most previous BS simulations were based on animal heart cell models. However, due to species differences, the use of human heart cell models, especially a model with three-dimensional whole-heart anatomical structure, is needed. In this study, we developed a model of the human ventricular action potential (AP) based on refining the ten Tusscher et al (2004 Am. J. Physiol. Heart Circ. Physiol. 286 H1573 - 89) model to incorporate newly available experimental data of some major ionic currents of human ventricular myocytes. These modified channels include the L-type calcium current (ICaL), fast sodium current (I-Na), transient outward potassium current (I-to), rapidly and slowly delayed rectifier potassium currents (I-Kr and I-Ks) and inward rectifier potassium current (I-Ki). Transmural heterogeneity of APs for epicardial, endocardial and mid-myocardial (M) cells was simulated by varying the maximum conductance of IKs and Ito. The modified AP models were then used to simulate the effects of BS on cellular AP and body surface potentials using a three-dimensional dynamic heart - torso model. Our main findings are as follows. (1) BS has little effect on the AP of endocardial or mid-myocardial cells, but has a large impact on the AP of epicardial cells. (2) A likely region of BS with abnormal cell AP is near the right ventricular outflow track, and the resulting ST-segment elevation is located in the median precordium area. These simulation results are consistent with experimental findings reported in the literature. The model can reproduce a variety of electrophysiological behaviors and provides a good basis for understanding the genesis of abnormal ECG under the condition of BS disease.
Resumo:
Reliable values of total and digestible tryptophan in components of feed formulation matrices are needed because tryptophan is often the third limiting amino acid in practical poultry diets. However, tryptophan is oxidatively destroyed during acid hydrolysis in routine amino acid analysis and its determination requires a separate analytical procedure. The variability in contents and apparent ileal digestibility for 6-week-old broiler chickens of tryptophan in 74 samples representing 24 feedstuffs are presented in this paper. The average ileal tryptophan digestibility coefficient in wheat was 0.83, in sorghum and triticale 0.75, maize 0.71, soybean meal 0.84, sunflower meal 0.81, canola meal 0.78 and cottonseed meal 0.75. Among the grain legumes, tryptophan in lupins was better digested than that in chickpeas, fababeans and field peas. Among the animal protein meals, the tryptophan digestibility coefficients in fish meal (0.77) and blood meal (0.84) were substantially higher than those in meat meal (0.64), meat-and-bone meal (0.63) and feather meal (0.52). Marked variations in tryptophan digestibility were also observed among samples of fish meal, meat-and-bone meal and meat meal, highlighting significant batch-to-batch differences. For most feedstuffs, considerable variability was observed in the tryptophan concentrations, but such variations were not reflected in digestibility coefficients. (c) 2006 Society of Chemical Industry.
Resumo:
1. The spatial heterogeneity of predator populations is an important component of ecological theories pertaining to predator-prey dynamics. Most studies within agricultural fields show spatial correlation (positive or negative) between mean predator numbers and prey abundance across a whole field over time but generally ignore the within-field spatial dimension. We used explicit spatial mapping to determine if generalist predators aggregated within a soybean field, the size of these aggregations and if predator aggregation was associated with pest aggregation, plant damage and predation rate. 2. The study was conducted at Gatton in the Lockyer Valley, 90 km west of Brisbane, Australia. Intensive sampling grids were used to investigate within-field spatial patterns. The first row of each grid was located in a lucerne field (10 m from interface) and the remaining rows were in an adjacent soybean field. At each point on the grid the abundance of foliage-dwelling and ground-dwelling pests and predators was measured, predation rates [using sentinel Helicoverpa armigera (Hubner) egg cards] and plant damage were estimated. Eight grids were sampled across two summer cropping seasons (2000/01, 2001/02). 3. Predators exhibited strong spatial patterning with regions of high and low abundance and activity within what are considered to be uniform soybean fields. Ground-dwelling and foliage-dwelling predators were often aggregated in patches approximately 40 m across. 4. Lycosidae (wolf spiders) displayed aggregation and were consistently more abundant within the lucerne, with a decreasing trap catch with distance from the lucrene/soybean interface. This trend was consistent between subsequent grids in a single field and between fields. 5. The large amount of spatial variability in within-field arthropod abundance (pests and predators) and activity (egg predation and plant damage) indicates that whole field averages were misleading. This result has serious implications for sampling of arthropod abundance and pest management decision-making based on scouting data. 6. There was a great deal of temporal change in the significant spatial patterns observed within a field at each sampling time point during a single season. Predator and pest aggregations observed in these fields were generally not stable for the entire season. 7. Predator aggregation did not correlate consistently with pest aggregation, plant damage or predation rate. Spatial patterns in predator abundance were not associated consistently with any single parameter measured. The most consistent positive association was between foliage-dwelling predators and pests (significant in four of seven grids). Inferring associations between predators and prey based on an intensive one-off sampling grid is difficult, due to the temporal variability in the abundance of each group. 8. Synthesis and applications. This study demonstrated that generalist predator populations are rarely distributed randomly and field edges and adjacent crops can have an influence on within-field predator abundance. This must be considered when estimating arthropod (pest and predator) abundance from a set of samples taken at random locations within a field.