48 resultados para Time inventory models
Resumo:
Objective:To investigate the effects of bilateral, surgically induced functional inhibition of the subthalamic nucleus (STN) on general language, high level linguistic abilities, and semantic processing skills in a group of patients with Parkinson’s disease. Methods:Comprehensive linguistic profiles were obtained up to one month before and three months after bilateral implantation of electrodes in the STN during active deep brain stimulation (DBS) in five subjects with Parkinson’s disease (mean age, 63.2 years). Equivalent linguistic profiles were generated over a three month period for a non-surgical control cohort of 16 subjects with Parkinson’s disease (NSPD) (mean age, 64.4 years). Education and disease duration were similar in the two groups. Initial assessment and three month follow up performance profiles were compared within subjects by paired t tests. Reliability change indices (RCI), representing clinically significant alterations in performance over time, were calculated for each of the assessment scores achieved by the five STN-DBS cases and the 16 NSPD controls, relative to performance variability within a group of 16 non-neurologically impaired adults (mean age, 61.9 years). Proportions of reliable change were then compared between the STN-DBS and NSPD groups. Results:Paired comparisons within the STN-DBS group showed prolonged postoperative semantic processing reaction times for a range of word types coded for meanings and meaning relatedness. Case by case analyses of reliable change across language assessments and groups revealed differences in proportions of change over time within the STN-DBS and NSPD groups in the domains of high level linguistics and semantic processing. Specifically, when compared with the NSPD group, the STN-DBS group showed a proportionally significant (p
Resumo:
This paper discusses a multi-layer feedforward (MLF) neural network incident detection model that was developed and evaluated using field data. In contrast to published neural network incident detection models which relied on simulated or limited field data for model development and testing, the model described in this paper was trained and tested on a real-world data set of 100 incidents. The model uses speed, flow and occupancy data measured at dual stations, averaged across all lanes and only from time interval t. The off-line performance of the model is reported under both incident and non-incident conditions. The incident detection performance of the model is reported based on a validation-test data set of 40 incidents that were independent of the 60 incidents used for training. The false alarm rates of the model are evaluated based on non-incident data that were collected from a freeway section which was video-taped for a period of 33 days. A comparative evaluation between the neural network model and the incident detection model in operation on Melbourne's freeways is also presented. The results of the comparative performance evaluation clearly demonstrate the substantial improvement in incident detection performance obtained by the neural network model. The paper also presents additional results that demonstrate how improvements in model performance can be achieved using variable decision thresholds. Finally, the model's fault-tolerance under conditions of corrupt or missing data is investigated and the impact of loop detector failure/malfunction on the performance of the trained model is evaluated and discussed. The results presented in this paper provide a comprehensive evaluation of the developed model and confirm that neural network models can provide fast and reliable incident detection on freeways. (C) 1997 Elsevier Science Ltd. All rights reserved.
Resumo:
Traditional waste stabilisation pond (WSP) models encounter problems predicting pond performance because they cannot account for the influence of pond features, such as inlet structure or pond geometry, on fluid hydrodynamics. In this study, two dimensional (2-D) computational fluid dynamics (CFD) models were compared to experimental residence time distributions (RTD) from literature. In one of the-three geometries simulated, the 2-D CFD model successfully predicted the experimental RTD. However, flow patterns in the other two geometries were not well described due to the difficulty of representing the three dimensional (3-D) experimental inlet in the 2-D CFD model, and the sensitivity of the model results to the assumptions used to characterise the inlet. Neither a velocity similarity nor geometric similarity approach to inlet representation in 2-D gave results correlating with experimental data. However. it was shown that 2-D CFD models were not affected by changes in values of model parameters which are difficult to predict, particularly the turbulent inlet conditions. This work suggests that 2-D CFD models cannot be used a priori to give an adequate description of the hydrodynamic patterns in WSP. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
Predicted area under curve (AUC), mean transit time (MTT) and normalized variance (CV2) data have been compared for parent compound and generated metabolite following an impulse input into the liver, Models studied were the well-stirred (tank) model, tube model, a distributed tube model, dispersion model (Danckwerts and mixed boundary conditions) and tanks-in-series model. It is well known that discrimination between models for a parent solute is greatest when the parent solute is highly extracted by the liver. With the metabolite, greatest model differences for MTT and CV2 occur when parent solute is poorly extracted. In all cases the predictions of the distributed tube, dispersion, and tasks-in-series models are between the predictions of the rank and tube models. The dispersion model with mixed boundary conditions yields identical predictions to those for the distributed tube model (assuming an inverse gaussian distribution of tube transit times). The dispersion model with Danckwerts boundary conditions and the tanks-in series models give similar predictions to the dispersion (mixed boundary conditions) and the distributed tube. The normalized variance for parent compound is dependent upon hepatocyte permeability only within a distinct range of permeability values. This range is similar for each model but the order of magnitude predicted for normalized variance is model dependent. Only for a one-compartment system is the MIT for generated metabolite equal to the sum of MTTs for the parent compound and preformed metabolite administered as parent.
Resumo:
The interlayer magnetoresistance of layered metals in a tilted magnetic field is calculated for two distinct models for the interlayer transport. The first model involves coherent interlayer transport, and makes use of results of semiclassical or Bloch-Boltzmann transport theory. The second model involves weakly incoherent interlayer transport where the electron is scattered many times within a layer before tunneling into the next layer. The results are relevant to the interpretation of experiments on angular-dependent magnetoresistance oscillations (AMRO) in quasi-one- and quasi-two-dimensional organic metals. We find that the dependence of the magnetoresistance on the direction of the magnetic field is identical for both models except when the field is almost parallel to the layers. An important implication of this result is that a three-dimensional Fermi surface is not necessary for the observation of the Yamaji and Danner oscillations seen in quasi-two- and quasi-one-dimensional metals, respectively. A universal expression is given for the dependence of the resistance at AMRO maxima and minima on the magnetic field and scattering time (and thus the temperature). We point out three distinctive features of coherent interlayer transport: (i) a beat frequency in the magnetic oscillations of quasi-two-dimensional systems, (ii) a peak in the angular-dependent magnetoresistance when the field is sufficiently large and parallel to the layers, and (iii) a crossover from a linear to a quadratic field dependence for the magnetoresistance when the field is parallel to the layers. Properties (i) and (ii) are compared with published experimental data for a range of quasi-two-dimensional organic metals. [S0163-1829(99)02236-5].
Resumo:
The concept of rainfall erosivity is extended to the estimation of catchment sediment yield and its variation over time. Five different formulations of rainfall erosivity indices, using annual, monthly and daily rainfall data, are proposed and tested on two catchments in the humid tropics of Australia. Rainfall erosivity indices, using simple power functions of annual and daily rainfall amounts, were found to be adequate in describing the interannual and seasonal variation of catchment sediment yield. The parameter values of these rainfall erosivity indices for catchment sediment yield are broadly similar to those for rainfall erosivity models in relation to the R-factor in the Universal Soil Loss Equation.
Resumo:
The convection-dispersion model and its extended form have been used to describe solute disposition in organs and to predict hepatic availabilities. A range of empirical transit-time density functions has also been used for a similar purpose. The use of the dispersion model with mixed boundary conditions and transit-time density functions has been queried recently by Hisaka and Sugiyanaa in this journal. We suggest that, consistent with soil science and chemical engineering literature, the mixed boundary conditions are appropriate providing concentrations are defined in terms of flux to ensure continuity at the boundaries and mass balance. It is suggested that the use of the inverse Gaussian or other functions as empirical transit-time densities is independent of any boundary condition consideration. The mixed boundary condition solutions of the convection-dispersion model are the easiest to use when linear kinetics applies. In contrast, the closed conditions are easier to apply in a numerical analysis of nonlinear disposition of solutes in organs. We therefore argue that the use of hepatic elimination models should be based on pragmatic considerations, giving emphasis to using the simplest or easiest solution that will give a sufficiently accurate prediction of hepatic pharmacokinetics for a particular application. (C) 2000 Wiley-Liss Inc. and the American Pharmaceutical Association J Pharm Sci 89:1579-1586, 2000.
Resumo:
Background. International research indicates that blue-collar employees typically exhibit lower rates of leisure-time physical activity. While lack of time and work demands are commonly reported barriers to activity, the extent to which time-at-work mediates the relationship between occupation and leisure-time physical activity is unclear. This study investigated the association between occupation, time spent in paid employment, and participation in leisure-time physical activity. Methods. This was a secondary analysis of cross-sectional data from the 1995 Australian Health Survey, focusing on employed persons ages 18-64 years (n = 24,454), Occupation was coded as per the Australian Standard Classification of Occupations and collapsed into three categories (professional, white-collar, blue-collar). Hours worked was categorized into eight levels, ranging from 1-14 to more than 50 h per week. Participation in leisure-time physical activity was categorized as either insufficient or sufficient for health, consistent with recommended levels of energy expenditure (1600 METS-min/fortnight). The relationship between occupation, hours worked, and leisure-time physical activity was examined using logistic regression. Analyses were conducted separately for male and female, and the results are presented as a series of models that successively adjust for a range of potential covariates: age, living arrangement, smoking status, body mass index, and self-reported health. Results. Individuals in blue-collar occupations were approximately 50% more likely to be classified as insufficiently active. This occupational variability in leisure-time physical activity was not explained by hours worked. There was a suggested relationship between hours worked and leisure-time physical activity; however, this differed between men and women, and was difficult to interpret. Conclusions. Occupational variability in leisure-time physical activity cannot be explained by hours worked. Therefore, reports that work constitutes a barrier to participation should be explored further. Identification of the factors contributing to occupational variability in leisure-time physical activity will add to our understanding of why population subgroups differ in their health risk profiles, and assist in the development of health promotion strategies to reduce rates of sedentariness and health inequalities. (C) 2000 American Health Foundation and Academic Press.
Resumo:
Residence time distribution studies of gas through a rotating drum bioreactor for solid-state fermentation were performed using carbon monoxide as a tracer gas. The exit concentration as a function of time differed considerably from profiles expected for plug flow, plug flow with axial dispersion, and continuous stirred tank reactor (CSTR) models. The data were then fitted by least-squares analysis to mathematical models describing a central plug flow region surrounded by either one dead region (a three-parameter model) or two dead regions (a five-parameter model). Model parameters were the dispersion coefficient in the central plug flow region, the volumes of the dead regions, and the exchange rates between the different regions. The superficial velocity of the gas through the reactor has a large effect on parameter values. Increased superficial velocity tends to decrease dead region volumes, interregion transfer rates, and axial dispersion. The significant deviation from CSTR, plug flow, and plug flow with axial dispersion of the residence time distribution of gas within small-scale reactors can lead to underestimation of the calculation of mass and heat transfer coefficients and hence has implications for reactor design and scaleup. (C) 2001 John Wiley & Sons, Inc.
Resumo:
The majority of past and current individual-tree growth modelling methodologies have failed to characterise and incorporate structured stochastic components. Rather, they have relied on deterministic predictions or have added an unstructured random component to predictions. In particular, spatial stochastic structure has been neglected, despite being present in most applications of individual-tree growth models. Spatial stochastic structure (also called spatial dependence or spatial autocorrelation) eventuates when spatial influences such as competition and micro-site effects are not fully captured in models. Temporal stochastic structure (also called temporal dependence or temporal autocorrelation) eventuates when a sequence of measurements is taken on an individual-tree over time, and variables explaining temporal variation in these measurements are not included in the model. Nested stochastic structure eventuates when measurements are combined across sampling units and differences among the sampling units are not fully captured in the model. This review examines spatial, temporal, and nested stochastic structure and instances where each has been characterised in the forest biometry and statistical literature. Methodologies for incorporating stochastic structure in growth model estimation and prediction are described. Benefits from incorporation of stochastic structure include valid statistical inference, improved estimation efficiency, and more realistic and theoretically sound predictions. It is proposed in this review that individual-tree modelling methodologies need to characterise and include structured stochasticity. Possibilities for future research are discussed. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
A number of mathematical models have been used to describe percutaneous absorption kinetics. In general, most of these models have used either diffusion-based or compartmental equations. The object of any mathematical model is to a) be able to represent the processes associated with absorption accurately, b) be able to describe/summarize experimental data with parametric equations or moments, and c) predict kinetics under varying conditions. However, in describing the processes involved, some developed models often suffer from being of too complex a form to be practically useful. In this chapter, we attempt to approach the issue of mathematical modeling in percutaneous absorption from four perspectives. These are to a) describe simple practical models, b) provide an overview of the more complex models, c) summarize some of the more important/useful models used to date, and d) examine sonic practical applications of the models. The range of processes involved in percutaneous absorption and considered in developing the mathematical models in this chapter is shown in Fig. 1. We initially address in vitro skin diffusion models and consider a) constant donor concentration and receptor conditions, b) the corresponding flux, donor, skin, and receptor amount-time profiles for solutions, and c) amount- and flux-time profiles when the donor phase is removed. More complex issues, such as finite-volume donor phase, finite-volume receptor phase, the presence of an efflux. rate constant at the membrane-receptor interphase, and two-layer diffusion, are then considered. We then look at specific models and issues concerned with a) release from topical products, b) use of compartmental models as alternatives to diffusion models, c) concentration-dependent absorption, d) modeling of skin metabolism, e) role of solute-skin-vehicle interactions, f) effects of vehicle loss, a) shunt transport, and h) in vivo diffusion, compartmental, physiological, and deconvolution models. We conclude by examining topics such as a) deep tissue penetration, b) pharmacodynamics, c) iontophoresis, d) sonophoresis, and e) pitfalls in modeling.
Resumo:
This paper presents an agent-based approach to modelling individual driver behaviour under the influence of real-time traffic information. The driver behaviour models developed in this study are based on a behavioural survey of drivers which was conducted on a congested commuting corridor in Brisbane, Australia. Commuters' responses to travel information were analysed and a number of discrete choice models were developed to determine the factors influencing drivers' behaviour and their propensity to change route and adjust travel patterns. Based on the results obtained from the behavioural survey, the agent behaviour parameters which define driver characteristics, knowledge and preferences were identified and their values determined. A case study implementing a simple agent-based route choice decision model within a microscopic traffic simulation tool is also presented. Driver-vehicle units (DVUs) were modelled as autonomous software components that can each be assigned a set of goals to achieve and a database of knowledge comprising certain beliefs, intentions and preferences concerning the driving task. Each DVU provided route choice decision-making capabilities, based on perception of its environment, that were similar to the described intentions of the driver it represented. The case study clearly demonstrated the feasibility of the approach and the potential to develop more complex driver behavioural dynamics based on the belief-desire-intention agent architecture. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Quantifying mass and energy exchanges within tropical forests is essential for understanding their role in the global carbon budget and how they will respond to perturbations in climate. This study reviews ecosystem process models designed to predict the growth and productivity of temperate and tropical forest ecosystems. Temperate forest models were included because of the minimal number of tropical forest models. The review provides a multiscale assessment enabling potential users to select a model suited to the scale and type of information they require in tropical forests. Process models are reviewed in relation to their input and output parameters, minimum spatial and temporal units of operation, maximum spatial extent and time period of application for each organization level of modelling. Organizational levels included leaf-tree, plot-stand, regional and ecosystem levels, with model complexity decreasing as the time-step and spatial extent of model operation increases. All ecosystem models are simplified versions of reality and are typically aspatial. Remotely sensed data sets and derived products may be used to initialize, drive and validate ecosystem process models. At the simplest level, remotely sensed data are used to delimit location, extent and changes over time of vegetation communities. At a more advanced level, remotely sensed data products have been used to estimate key structural and biophysical properties associated with ecosystem processes in tropical and temperate forests. Combining ecological models and image data enables the development of carbon accounting systems that will contribute to understanding greenhouse gas budgets at biome and global scales.