32 resultados para Thread safe parallel run-time
Resumo:
Purpose: For ultra-endurance athletes, whose energy expenditure is likely to be at the extremes of human tolerance for sustained periods of time, there is increased concern regarding meeting energy needs. Due to the lack of data outlining the energy requirements of such athletes, it is possible that those participating in ultra-endurance exercise are compromising performance, as well as health, as a result of inadequate nutrition and energy intake. To provide insight into this dilemma, we have presented a case study of a 37-yr-old ultra-marathon runner as he runs around the coast of Australia. Methods: Total energy expenditure was measured over a 2-wk period using the doubly labeled water technique. Results: The average total energy expenditure of the case subject was 6321 kcal.d(-1). Based on the expected accuracy and precision of the doubly labeled water technique the subject's total energy expenditure might range between 6095 and 6550 kcal.d(-1). The subject's average daily water turnover was 6.083 L over the 14-d period and might range between 5.9 L and 6.3 L.d(-1). Conclusions: This information will provide a guide to the energy requirements of ultra-endurance running and enable athletes, nutritionists, and coaches to optimize performance without compromising the health of the participant.
Resumo:
In the carnivorous plant family Lentibulariaceae, the bladderwort lineage (Utricularia and Genlisea) is substantially more species-rich and morphologically divergent than its sister lineage, the butterworts (Pinguicula). Bladderworts have a relaxed body plan that has permitted the evolution of terrestrial, epiphytic, and aquatic forms that capture prey in intricately designed suction bladders or corkscrew-shaped lobster-pot traps. In contrast, the flypaper-trapping butterworts maintain vegetative structures typical of angiosperms. We found that bladderwort genomes evolve significantly faster across seven loci (the trnL intron, the second trnL exon, the trnL-F intergenic spacer, the rps16 intron, rbcL, coxI, and 5.8S rDNA) representing all three genomic compartments. Generation time differences did not show a significant association. We relate these findings to the contested speciation rate hypothesis, which postulates a relationship between increased nucleotide substitution and increased cladogenesis. (C) 2002 The Willi Hennig Society.
Resumo:
The aim of this study was to further investigate the mechanism of suppression of natural killer (NK) cell cytotoxic activity In peripheral blood following strenuous exercise. Blood was collected for analysis of NK cell concentration, cytotoxic activity, CD2 surface expression and perforin gene expression from runners (RUN, n = 6) and resting controls (CONTROL, n = 4) pre-exercise, 0, 1.5, 5, and 24 h following a 60-min treadmill run at 80% of VO2 peak. Natural killer cytotoxic activity, measured using a whole blood chromium release assay, fluctuated minimally in the CONTROL group and increased by 63% and decreased by 43% 0 and 1.5 h post-exercise, respectively, in the RUN group (group x time, P < 0.001). Lytic index (cytotoxic activity per cell) did not change. Perforin mRNA, measured using quantitative real-time polymerase chain reaction (ORT-PCR) decreased from pre- to post-exercise and remained decreased through 24 h, The decrease from pre- to 0 In post-exercise was seen predominately in the RUN group and was inversely correlated r = - 0.95) to pre-exercise perform mRNA. The NK cell surface expression of CD2 (lymphocyte function-associated antigen-2) was determined using fluorescent antibodies and flow cytometry, There was no change in the proportion of NK cells expressing CD2 or CD2 density, We conclude that (1) numerical redistribution accounted for most of the change in NK cytotoxic activity following a strenuous run, (2) decrease in perforin gene expression during the run was inversely related to pre-exercise levels but did not parallel changes in cytotoxic activity, and (3) CD2 surface expression was not affected by exercise.
Resumo:
The refinement calculus is a well-established theory for deriving program code from specifications. Recent research has extended the theory to handle timing requirements, as well as functional ones, and we have developed an interactive programming tool based on these extensions. Through a number of case studies completed using the tool, this paper explains how the tool helps the programmer by supporting the many forms of variables needed in the theory. These include simple state variables as in the untimed calculus, trace variables that model the evolution of properties over time, auxiliary variables that exist only to support formal reasoning, subroutine parameters, and variables shared between parallel processes.
Resumo:
A firm's competitive strategy and innovation processes are strongly influenced by, and must be responsive to, its competitive environment. This is nowhere more strongly evident than in the high technology industries. In the present work, case studies of biotechnology new ventures are presented. These studies illustrate how an initial market entry strategy of parallel competition (through creative imitation) has enabled several biotechnology start-ups to reduce their mortality risk. We coin the term ''parallel bridge'' to describe this strategy. The parallel bridge provides early cash flows which support research and development and provide time for new ventures to develop core competencies, including a capacity to produce second and third horizon products that will sustain longer term competitiveness.
Resumo:
The Roche Cobas Amplicor system is widely used for the detection of Neisseria gonorrhoeae but is known to cross react with some commensal Neisseria spp. Therefore, a confirmatory test is required. The most common target for confirmatory tests is the cppB gene of N. gonorrhoeae. However, the cppB gene is also present in other Neisseria spp. and is absent in some N. gonorrhoeae isolates. As a result, laboratories targeting this gene run the risk of obtaining both false-positive and false-negative results. In the study presented here, a newly developed N. gonorrhoeae LightCycler assay (NGpapLC) targeting the N. gonorrhoeae porA pseudogene was tested. The NGpapLC assay was used to test 282 clinical samples, and the results were compared to those obtained using a testing algorithm combining the Cobas Amplicor System (Roche Diagnostics, Sydney, Australia) and an in-house LightCycler assay targeting the cppB gene (cppB-LC). In addition, the specificity of the NGpapLC assay was investigated by testing a broad panel of bacteria including isolates of several Neisseria spp. The NGpapLC assay proved to have comparable clinical sensitivity to the cppB-LC assay. In addition; testing of the bacterial panel showed the NGpapLC assay to be highly specific for N. gonorrhoeae DNA. The results of this study show the NGpapLC assay is a suitable alternative to the cppB-LC assay for confirmation of N. gonorrhoeae-positive results obtained with Cobas Amplicor.
Resumo:
A new transceive system for chest imaging for MRI applications is presented. A focused, eight-element transceive torso phased array coil is designed to investigate transmitting a focused radiofrequency field deep within the torso and to enhance signal homogeneity in the heart region. The system is used in conjunction with the SENSE reconstruction technique to enable focused parallel imaging. A hybrid finite-difference-time-domain/method-of-moments method is used to accurately predict the radiofrequency behavior inside the human torso. The simulation results reported herein demonstrate the feasibility of the design concept, which shows that radiofrequency field focusing with SENSE reconstruction is theoretically achievable. (c) 2005 Wiley-Liss, Inc.
Resumo:
This paper presents a finite-difference time-domain (FDTD) simulator for electromagnetic analysis and design applications in MRI. It is intended to be a complete FDTD model of an MRI system including all RF and low-frequency field generating units and electrical models of the patient. The pro-ram has been constructed in an object-oriented framework. The design procedure is detailed and the numerical solver has been verified against analytical solutions for simple cases and also applied to various field calculation problems. In particular, the simulator is demonstrated for inverse RF coil design, optimized source profile generation, and parallel imaging in high-frequency situations. The examples show new developments enabled by the simulator and demonstrate that the proposed FDTD framework can be used to analyze large-scale computational electromagnetic problems in modern MRI engineering. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
Multiple-sown field trials in 4 consecutive years in the Riverina region of south-eastern Australia provided 24 different combinations of temperature and day length, which enabled the development of crop phenology models. A crop model was developed for 7 cultivars from diverse origins to identify if photoperiod sensitivity is involved in determining phenological development, and if that is advantageous in avoiding low-temperature damage. Cultivars that were mildly photoperiod-sensitive were identified from sowing to flowering and from panicle initiation to flowering. The crop models were run for 47 years of temperature data to quantify the risk of encountering low temperature during the critical young microspore stage for 5 different sowing dates. Cultivars that were mildly photoperiod-sensitive, such as Amaroo, had a reduced likelihood of encountering low temperature for a wider range of sowing dates compared with photoperiod-insensitive cultivars. The benefits of increased photoperiod sensitivity include greater sowing flexibility and reduced water use as growth duration is shortened when sowing is delayed. Determining the optimal sowing date also requires other considerations, e. g. the risk of cold damage at other sensitive stages such as flowering and the response of yield to a delay in flowering under non-limiting conditions. It was concluded that appropriate sowing time and the use of photoperiod-sensitive cultivars can be advantageous in the Riverina region in avoiding low temperature damage during reproductive development.
Resumo:
A new method for ameliorating high-field image distortion caused by radio frequency/tissue interaction is presented and modeled, The proposed method uses, but is not restricted to, a shielded four-element transceive phased array coil and involves performing two separate scans of the same slice with each scan using different excitations during transmission. By optimizing the amplitudes and phases for each scan, antipodal signal profiles can be obtained, and by combining both images together, the image distortion can be reduced several-fold. A hybrid finite-difference time-domain/method-of-moments method is used to theoretically demonstrate the method and also to predict the radio frequency behavior inside the human head. in addition, the proposed method is used in conjunction with the GRAPPA reconstruction technique to enable rapid imaging. Simulation results reported herein for IIT (470 MHz) brain imaging applications demonstrate the feasibility of the concept where multiple acquisitions using parallel imaging elements with GRAPPA reconstruction results in improved image quality. (c) 2006 Wiley Periodicals, Inc.
Resumo:
Despite the insight gained from 2-D particle models, and given that the dynamics of crustal faults occur in 3-D space, the question remains, how do the 3-D fault gouge dynamics differ from those in 2-D? Traditionally, 2-D modeling has been preferred over 3-D simulations because of the computational cost of solving 3-D problems. However, modern high performance computing architectures, combined with a parallel implementation of the Lattice Solid Model (LSM), provide the opportunity to explore 3-D fault micro-mechanics and to advance understanding of effective constitutive relations of fault gouge layers. In this paper, macroscopic friction values from 2-D and 3-D LSM simulations, performed on an SGI Altix 3700 super-cluster, are compared. Two rectangular elastic blocks of bonded particles, with a rough fault plane and separated by a region of randomly sized non-bonded gouge particles, are sheared in opposite directions by normally-loaded driving plates. The results demonstrate that the gouge particles in the 3-D models undergo significant out-of-plane motion during shear. The 3-D models also exhibit a higher mean macroscopic friction than the 2-D models for varying values of interparticle friction. 2-D LSM gouge models have previously been shown to exhibit accelerating energy release in simulated earthquake cycles, supporting the Critical Point hypothesis. The 3-D models are shown to also display accelerating energy release, and good fits of power law time-to-failure functions to the cumulative energy release are obtained.
Resumo:
Real-time software systems are rarely developed once and left to run. They are subject to changes of requirements as the applications they support expand, and they commonly outlive the platforms they were designed to run on. A successful real-time system is duplicated and adapted to a variety of applications - it becomes a product line. Current methods for real-time software development are commonly based on low-level programming languages and involve considerable duplication of effort when a similar system is to be developed or the hardware platform changes. To provide more dependable, flexible and maintainable real-time systems at a lower cost what is needed is a platform-independent approach to real-time systems development. The development process is composed of two phases: a platform-independent phase, that defines the desired system behaviour and develops a platform-independent design and implementation, and a platform-dependent phase that maps the implementation onto the target platform. The last phase should be highly automated. For critical systems, assessing dependability is crucial. The partitioning into platform dependent and independent phases has to support verification of system properties through both phases.
Resumo:
Experimental and theoretical studies have shown the importance of stochastic processes in genetic regulatory networks and cellular processes. Cellular networks and genetic circuits often involve small numbers of key proteins such as transcriptional factors and signaling proteins. In recent years stochastic models have been used successfully for studying noise in biological pathways, and stochastic modelling of biological systems has become a very important research field in computational biology. One of the challenge problems in this field is the reduction of the huge computing time in stochastic simulations. Based on the system of the mitogen-activated protein kinase cascade that is activated by epidermal growth factor, this work give a parallel implementation by using OpenMP and parallelism across the simulation. Special attention is paid to the independence of the generated random numbers in parallel computing, that is a key criterion for the success of stochastic simulations. Numerical results indicate that parallel computers can be used as an efficient tool for simulating the dynamics of large-scale genetic regulatory networks and cellular processes
Resumo:
Real-time control programs are often used in contexts where (conceptually) they run forever. Repetitions within such programs (or their specifications) may either (i) be guaranteed to terminate, (ii) be guaranteed to never terminate (loop forever), or (iii) may possibly terminate. In dealing with real-time programs and their specifications, we need to be able to represent these possibilities, and define suitable refinement orderings. A refinement ordering based on Dijkstra's weakest precondition only copes with the first alternative. Weakest liberal preconditions allow one to constrain behaviour provided the program terminates, which copes with the third alternative to some extent. However, neither of these handles the case when a program does not terminate. To handle this case a refinement ordering based on relational semantics can be used. In this paper we explore these issues and the definition of loops for real-time programs as well as corresponding refinement laws.