22 resultados para Thau Lagoon
Resumo:
Intensive animal industries create large volumes of nutrient rich effluent, which, if untreated, has the potential for substantial environmental degradation. Aquatic plants in aerobic lagoon systems have the potential to achieve inexpensive and efficient remediation of effluent, and to recover valuable nutrients that would otherwise be lost. Members of the family Lemnaceae (duckweeds) are widely used in lagoon systems, but despite their widespread use in the cleansing of sewage, only limited research has been conducted into their growth in highly eutrophic media, and little has been done to systematically distinguish between different types of media. This study examined the growth characteristics of duckweed in abattoir effluent, and explored possible ways of ameliorating the inhibitory factors to growth on this medium. A series of pot trials was conducted to test the tolerance of duckweed to abattoir effluent partially remediated by a sojourn in anaerobic fermentation ponds, both in its unmodified form, and after the addition of acid to manipulate pH, and the addition of bentonite. Unmodified abattoir effluent was highly toxic to duckweed, although duckweed remained viable and grew sub optimally in media with total ammonia nitrogen (TAN) concentrations of up to 100 mg/l. Duckweed also grew vigorously in effluent diluted 1:4 v/v, containing 56 mg TAN/L and also modified by addition of acid to decrease pH to 7 and by adding bentonite (0.5%).
Resumo:
Nitrate (NO3) accumulations (up to 1880 kg NO3-N/ha for a 12-m profile) in the soils of the Johnstone River catchment (JRC) may pose a serious environmental threat to the Great Barrier Reef lagoon if the NO3 were released. The: leaching of artificial rainwater through repacked soil columns was investigated to determine the effect of low NO3/low ionic strength inputs on the NO3 Chemistry of the JRC profiles. Repacked soil columns were used to simulate the 11.5-m profiles, and the soil solution anion and cation concentrations were monitored at 10 points throughout the soil column. As the rainwater was applied, NO3 leached down the profile, with substantial quantities exiting the columns. Anion exchange was discounted as the major mechanism of NO3 release due to the substantial net loss of anions from the system (up to 2740 kg NO3-N/ha over the experimental period). As the soils were dominated by variable charge minerals, the effect of changing pH and ionic strength on the surface charge density was investigated in relation to the release of NO3 from the exchange. It was concluded that the equilibration of the soil solution with the low ionic strength rainwater solution resulted in a lessening of both the positive and negative surface charge. Nitrate was released into the soil solution and subsequently leached due to the lessening of the positive surface charge. Loss of NO3 from the soil profile was slow, with equivalent field release times estimated to be tens of years. Although annual release rates were high in absolute terms (up to 175 kg NO3-N/ha.year), they are only slightly greater than the current loss rates from fertilised sugarcane production (up to 50 kg NO3-N/ha.year). In addition to this, the large-scale release of NO3 from the accumulations will only occur until a new equilibrium is established with the input rainwater solution.
Resumo:
We compared inorganic phosphate (P-i) uptake and growth kinetics of two cultures of the diazotrophic cyanobacterium Trichodesmium isolated from the North Atlantic Ocean (IMS101) and from the Great Barrier Reef, Australia (GBRTRLI101). Phosphate-limited cultures had up to six times higher maximum P-i uptake rates than P-replete cultures in both strains. For strain GBRTRLI101, cell-specific P-i uptake rates were nearly twice as high, due to larger cell size, but P-specific maximum uptake rates were similar for both isolates. Half saturation constants were 0.4 and 0.6 muM for P-i uptake and 0.1 and 0.2 muM for growth in IMS101 and GBRTRLI101, respectively. Phosphate uptake in both strains was correlated to growth rates rather than to light or temperature. The cellular phosphorus quota for both strains increased with increasing P-i up to 1.0 muM. The C:P ratios were 340-390 and N:P ratios were 40-45 for both strains under severely P-limited growth conditions, similar to reported values for natural populations from the tropical Atlantic and Pacific Oceans. The C:P and N:P ratios were near Redfield values in medium with >1.0 muM P-i. The North Atlantic strain IMS101 is better adapted to growing on P-i at low concentrations than is GBRTRLI101 from the more P-i-enriched Great Barrier Reef. However, neither strain can achieve appreciable growth at the very low (nanomolar) P-i concentrations found in most oligotrophic regimes. Phosphate could be an important source of phosphorus for Trichodesmium on the Great Barrier Reef, but populations growing in the oligotrophic open ocean must rely primarily on dissolved organic phosphorus sources.
Resumo:
Herbicides, particularly diuron, were correlated with severe and widespread dieback of the dominant mangrove, Avicennia marina (Forsk.) Vieth. var. eucalyptifolia (Val.) N.C. Duke (Avicenniaceae), its reduced canopy condition, and declines in seedling health within three neighbouring estuaries in the Mackay region of NE Australia. This unusual species-specific dieback, first observed in the early 1990s, had gotten notably worse by 2002 to affect > 30km(2) of mangroves in at least five adjacent estuaries in the region. Over the past century, agricultural production has responded well to the demands of increasing population with improvements in farm efficiency assisted by significant increases in the use of agricultural chemicals. However, with regular and episodic river flow events, these chemicals have sometimes found their way into estuarine and nearshore water and sediments where their effects on marine habitats have been largely unquantified. Investigations over the last three years in the Mackay region provide compelling evidence of diuron, and possibly other agricultural herbicides, as the most likely cause of the severe and widespread mangrove dieback. The likely consequences of such dieback included declines in coastal water quality with increased turbidity, nutrients and sediment deposition, as well as further dispersal of the toxic chemicals. The implications of such findings are immense since they describe not only the serious deterioration of protected and beneficial mangrove habitat but also the potential for significant direct and indirect effects on other highly-valued estuarine and marine habitats in the region, including seagrass beds and coral reefs of the Great Barrier Reef lagoon. This article reviews all key findings and observations to date and describes the essential correlative and causative evidence. (c) 2004 Elsevier Ltd. All rights reserved.
Long-term persistence of multi-drug-resistant Salmonella enterica serovar Newport in two dairy herds
Resumo:
Objective - To evaluate the association between maintaining joint hospital and maternity pens;and persistence of multi-drug-resistant (MDR) Salmonella enterica serovar Newport on 2 dairy farms. Design - Observational study. Sample Population - Feces and environmental samples from 2 dairy herds. Procedure - Herds were monitored for fecal shedding of S enterica Newport after outbreaks of clinical disease. Fecal and environmental samples were collected approximately monthly from pens housing sick cows and calving cows and from pens containing lactating cows. Cattle shedding the organism were tested serially on subsequent visits to determine carrier status. One farm was resampled after initiation of interventional procedures, including separation of hospital and maternity pens. Isolates were characterized via serotyping, determination of antimicrobial resistance phenotype, detection of the CMY-2 gene, and DNA fingerprinting. Results - The prevalence (32.4% and 33.3% on farms A and B, respectively) of isolating Salmonella from samples from joint hospital-maternity pens was significantly higher than the prevalence in samples from pens housing preparturient cows (0.8%, both farms) and postparturient cows on Farm B (8.8%). Multi-drug-resistant Salmonella Newport was isolated in high numbers from bedding material, feed refusals, lagoon slurry, and milk filters. One cow excreted the organism for 190 days. Interventional procedures yielded significant reductions in the prevalences of isolating the organism from fecal and environmental samples. Most isolates were of the C2 serogroup and were resistant to third-generation cephalosporins. Conclusions and Clinical Relevance - Management practices may be effective at reducing the persistence of MDR Salmonella spp in dairy herds, thus mitigating animal and public health risk.
Resumo:
Growth, Condition Index (CI) and survival of the pearl oysters, Pinctada maxima and R margaritifera, were measured in three size groups of oysters over 14 months at two dissimilar environments in the Great Barrier Reef lagoon. These were the Australian Institute of Marine Science (AIMS) in a mainland bay and Orpheus Island Research Station (OIRS) in coral reef waters. Temperature, suspended particulate matter (SPM) and particulate organic matter (POM) were monitored during the study. Temperature at AIMS fluctuated more widely than at OIRS both daily and seasonally, with annual ranges 20-31 degrees C and 22-30 degrees C, respectively. Mean SPM concentration at AIMS (11.1 mg l(-1)) was much higher than at OIRS (1.4 mg l(-1)) and fluctuated widely (2-60 mg l(-1)). Mean POM level was also substantially higher at AIMS, being 2.1 mg l(-1) compared with 0.56 mg l(-1) at OIRS. Von Bertalatiffy growth curve analyses showed that P. maxima grew more rapidly and to larger sizes than P. margaritifera at both sites. For the shell height (SH) of R maxima, growth index phi'=4.31 and 4.24, asymptotic size SHinfinity = 229 and 205 mm, and time to reach 120 mm SH (T-(120))= 1.9 and 2.1 years at AIMS and OIRS, respectively. While for P margaritifera, phi'=4.00 and 4.15, SHinfinity = 136 and 157 mm, and T-(120) = 2.5 and 3.9 years at AIMS and OIRS, respectively. R maxima had significantly lower growth rates and lower survival of small oysters during winter compared with summer. There were, however, no significant differences between the two sites in growth rates of P. maxima and final Cl values. In contrast, P. margaritifiera showed significant differences between sites and not seasons, with lower growth rates, survival of small oysters, final Cl values and asymptotic sizes at AIMS. The winter low temperatures, but not high SPM at AIMS, adversely affected P. maxima. Conversely, the high SPM levels at AIMS, but not temperature, adversely affected P. margaritifera. This was in accordance with earlier laboratory-based energetics studies of the effects of temperature and SPM on these two species. P maxima has potential to be commercially cultured in ca. > 25 degrees C waters with a wide range of SPM levels, including oligotrophic coral reef waters with appropriate particle sizes. It is possible to culture R margaritifera in turbid conditions, but its poor performance in these conditions makes commercial culture unlikely. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
New laboratory scale experimental data are presented on the forcing of beach groundwater levels by wave run-up. The experimental setup simulates a coastal barrier dividing the ocean from a relatively constant back beach water level, conditions approximating a closed off lagoon system or beach aquifer. The data are critically compared to an advanced numerical model for simulating wave and beach groundwater interaction in the coastal zone, and provide the first experimental verification of such a model. Overall model-data comparisons are good, but some systematic discrepancies are apparent, and reasons for these are discussed.