84 resultados para TUMOUR NECROSIS FACTOR
Resumo:
The effect of aging on host resistance to systemic candidosis was assessed by monitoring the course of infection in 16-month-old CBA/CaH mice (aged non-immune) and in a comparable group that had been infected with a sublethal dose of Candida albicans at 6 weeks of age (aged immune). Aged non-immune mice showed rapid progression of the disease, with a marked increase in the number of mycelia in the brain and kidney, and early morbidity, Foci of myocardial necrosis were evident, but inflammatory cells were sparse. The histological picture in the aged immune mice was similar to that in the aged non-immune group, although fewer mycelial aggregates were seen. Both groups of aged mice showed a significantly lower fungal burden in the brain on day 1 of infection, but on day 4, colony counts increased significantly in the aged non-immune mice, Comparison of cytokine gene expression in the infected brains showed that the relative amount of interferon-gamma and tumour necrosis factor-alpha cDNA were similar in all three groups. Interleukin-6 was elevated in both infected non-immune and uninfected aged mice. Aged immune mice showed no morbidity after challenge, and both colonisation and tissue damage were reduced in comparison with the aged non-immune animals.
Resumo:
Oropharyngeal candidiasis is associated with defects in cell-mediated immunity, and is commonly seen in immunocompromised patients. We have previously shown that T-cell-deficient BALB/c nude (nu/nu) mice are extremely susceptible to oropharyngeal candidiasis, and that recovery from a chronic infection is dependent on CD4 T lymphocytes. In this study we describe the local tissue cytokine profile in lymphocyte-reconstituted immunodeficient mice and their euthymic counterparts. Mice were infected orally with 10(8) cells of the yeast Candida albicans , and oral tissues sampled on days 0, 4, 8, and 14. Nude mice were reconstituted with 3 x 10(7) naive lymphocytes following oral inoculation. Interleukin (IL)-6, interferon (IFN)-gamma and tumour necrosis factor (TNF)-alpha were identified in the oral tissues of infected euthymic mice recovering from oral infection, as well as naive controls. TNF-alpha was identified in nude oral tissue on days 4 and 8, but only after lymphocyte reconstitution. No IL-2, IL-4 or IL-10 was detected in either euthymic or athymic mice at any time-point throughout the experiment. This study confirms the functional activity of T lymphocytes in reconstituted nude mice, and suggests that TNF-alpha may be an important mediator in the recovery from oropharyngeal candidiasis.
Resumo:
TNF-alpha neutralising agents such as Infliximab (Remicade(R)), Etanercept (Enbrel(R)) and the IL-1 receptor antagonist Anakinra (Kineret(R)), are currently used clinically for the treatment of many inflammatory diseases such as Crohn's disease, rheumatoid arthritis, ankylosing spondylitis, juvenile rheumatoid arthritis, psoriatic arthritis and psoriasis. These protein preparations are expensive to manufacture and administer, need to be injected and can cause allergic reactions. An alternative approach to lowering the levels of TNF-alpha and IL-1 beta in inflammatory disease, is to inhibit the enzymes that generate these cytokines using cheaper small molecules. This paper is a broad overview of the progress that has been achieved so far, with respect to small molecule inhibitor design and pharmacological studies (in animals and humans), for the metalloprotease Tumour Necrosis Factor-alpha Converting Enzyme (TACE) and the cysteine protease Caspase-1 (Interieukin-1 beta Converting Enzyme, ICE). Inhibitors of these two enzymes are currently considered to be good therapeutic targets that have the potential to provide relatively inexpensive and orally bioavailable anti-inflammatory agents in the future.
Resumo:
Elevated concentrations of plasma tumour necrosis factor (TNF)-alpha, interleukin (IL)-1 and IL-6 have been detected in patients with alcoholic hepatitis and have been implicated in the pathogenesis of hepatocyte necrosis. The present study used a rat model to conduct a detailed histological and biochemical examination of the expression of various pro-inflammatory cytokines and associated liver pathology in ethanol-potentiated lipopolysaccharide (LPS)-induced liver injury. Male Wistar rats were pair-fed either the control or ethanol-containing (36% of caloric intake as ethanol) form of the Lieber-DeCarli liquid diet for 6 weeks. Liver injury was induced by the i.v. injection of LPS (1 mu g/g bodyweight), with animals being killed at O, 1, 3, 6, 12 and 24 h after injection. At the later time points, plasma transaminase and transpeptidase activities were significantly elevated in ethanol-fed LPS-treated rats compared with control-fed LPS-treated animals. At these times after LPS treatment, hepatocytes in ethanol-fed animals displayed fatty change and necrosis with an associated neutrophil polymorph infiltrate. Time course analysis revealed that plasma TNF-alpha (1-3 h post-LPS) and IL-6 (3 h post-LPS) bioactivity was significantly elevated in ethanol-fed compared with control-fed animals. No difference was seen in plasma IL-1 alpha concentration (maximal in both groups 6 h post-LPS). The expression of TNF-alpha, IL-1 alpha, IL-1 beta and IL-6 mRNA were elevated between 1 and 6 h post-LPS in the livers of both control and ethanol-fed rats. However, ethanol-fed LPS-treated animals exhibited significantly higher maximal expression of IL-1 and IL-6 mRNA. Comparison of the appearance of cytokine mRNA and plasma bioactivity indicated an effect of ethanol feeding on post-transcriptional processing and/or the kinetics of the circulating cytokines. Elevated levels of both hepatic cytokine mRNA expression and the preceding plasma cytokines are presumably a necessary prerequisite for hepatic injury seen in this model and, therefore, possibly for the damage seen in human alcoholics. Further studies using this model may lead to significant advances in our understanding of the pathogenic mechanisms of alcoholic liver disease in humans.
Resumo:
Strain differences in tissue responses to infection with Candida albicans were examined in nude mice having susceptible (CBA/CaH) and resistant (BALB/c) parentage. Homozygous (nu/nu) mice of both strains were more resistant to systemic infection with C. albicans than heterozygous (nu/+) littermates as indicated by a reduction in both the severity of tissue damage and colony counts in the brain and kidney. However, the tissue lesions in nu/nu CBA/CaH mice were markedly more severe than those in nu/nu mice with the BALB/c background. This pattern was reflected in the greater fungal burden in the CBA/CaH strain. Analysis of cDNA from infected tissues using a competitive polymerase chain reaction excluded interferon-gamma (IFN-gamma), tumour necrosis factor-alpha (TNF-alpha), and interleukin 6 (IL-6) as mediators of the enhanced resistance of the nude mice. The results confirm that the different patterns of lesion severity in BALB/c and CBA/CaH mice do not involve T lymphocyte-mediated pathology, and are consistent with the hypothesis that strain-dependent tissue damage is not dependent on the effector function of macrophages or their precursors.
Resumo:
1. The past 15 years has seen the emergence of a new field of neuroscience research based primarily on how the immune system and the central nervous system can interact. A notable example of this interaction occurs when peripheral inflammation, infection or tissue injury activates the hypothalamic- pituitary-adrenal axis (HPA). 2. During such assaults, immune cells release the pro- inflammatory cytokines interleukin (IL)-1, IL-6 and tumour necrosis factor-alpha into the general circulation. 3. These cytokines are believed to act as mediators for HPA axis activation. However, physical limitations of cytokines impede their movement across the blood-brain barrier and, consequently, it has been unclear as to precisely how and where IL-1beta signals cross into the brain to trigger HPA axis activation. 4. Evidence from recent anatomical and functional studies suggests two neuronal networks may be involved in triggering HPA axis activity in response to circulating cytokines. These are catecholamine cells of the medulla oblongata and the circumventricular organs (CVO). 5. The present paper examines the role of CVO in generating HPA axis responses to pro-inflammatory cytokines and culminates with a proposed model based on cytokine signalling primarily involving the area postrema and catecholamine cells in the ventrolateral and dorsal medulla.
Resumo:
Objectives. To compare immunohistochemical scoring with clinical scoring and radiology for the assessment of rheumatoid arthritis (RA) disease activity, synovial tissue (ST) biopsied arthroscopically was assessed from 18 patients before and after commencement of disease-modifying anti-rheumatic drug (DMARD) therapy. Methods. Lymphocytes, macrophages, differentiated dendritic cells (DC), vascularity, tumour necrosis factor (TNF)alpha and interleukin-1 beta levels were scored. Clinical status was scored using the American College of Rheumatology (ACR) core set and serial radiographs were scored using the Larsen and Sharp methods. Histopathological evidence of activity included infiltration by lymphocytes, DC, macrophages. tissue vascularity, and expression of lining and sublining TNF alpha. These indices co-varied across the set of ST biopsies and were combined as a synovial activity score for each biopsy. Results. The change in synovial activity with treatment correlated with the ACR clinical response and with decreased radiological progression by the Larsen score, The ACR response to DMARD therapy. the change in synovial activity score and the slowing of radiological progression were each greatest in patients with high initial synovial vascularity. Conclusions. The data demonstrate an association between clinical, radiological and synovial immunopathological responses to anti-rheumatic treatment in RA. High ST vascularity may predict favourable clinical and radiological responses to treatment.
Resumo:
To evaluate the passage of cytokines through the gastrointestinal tract, we investigated the digestion of interleukin-8 (IL-8) and tumour necrosis factor α (TNFα), in vitro and in vivo, and their propensity to induce intestinal inflammation. We serially immuno-assayed IL-8 and TNFα solutions co-incubated with each of three pancreatin preparations at pH 4.5 and pH 8. We gavaged IL-8, TNFα and marker into 15 Wistar rats, and measured their faecal cytokine concentrations by ELISA and histologically examined their guts. IL-8 immunoreactivity was extinguished by all pancreatin preparations after 1 h of incubation at 37 °C. TNFα concentration progressively fell from 1 to 4 h with all enzyme preparations. Buffer control samples maintained their cytokine concentrations throughout incubation. No IL-8 or TNFα was detected in any rat faecal pellets. There was no significant proinflammatory effect of the gavaged cytokines on rat intestine. IL-8 and TNFα in aqueous solution could well be fully digested in the CF gut when transit time is normal and exogenous enzymes are provided, although cytokines swallowed in viscous sputum may be protected from such digestion. Copyright © 2011 Elsevier B.V. All rights reserved
Resumo:
Adipose tissue is a highly active endocrine organ secreting a range of soluble products with both local and distant actions. These hormones have important roles in metabolism, reproduction, cardiovascular function and immunity. It is now evident that adipose endocrine function directly influences other organ systems, including the brain, liver and skeletal muscle. The endocrine function of adipose tissue is significantly regulated by nutritional status, and both are inextricably linked to the energy storage role of adipose tissue. This chapter highlights the endocrinology of adipose tissue by concentrating on functional aspects of the secreted products. The data of particular relevance to humans are highlighted, and areas in need of future research are suggested.
Resumo:
Objective To report on the failure of thalidomide to inhibit tumour growth in an animal model of human renal cell carcinoma (RCC). Materials and methods An orthotopic xenograft model of human RCC was used in which tumour cells were implanted in the left kidney of male 'severe combined immunodeficient' mice. Thalidomide was administered by intraperitoneal injection and after 34 days the mice were killed. The extent of tumour growth was compared in treated and untreated mice. Total RNA was extracted from both tumour-affected and contralateral kidneys, and analysed by reverse transcription-polymerase chain reaction for various genes implicated in angiogenesis and metastasis in RCC. Results Thalidomide failed to inhibit the growth of xenograft tumours. The expression of angiogenic genes, e.g. vascular endothelial growth factor and fibroblast growth factor type 2 (FGF-2) within normal and tumour-affected kidney tissue was not reduced by thalidomide. Intratumoral transcription Of beta(3)-integrin, a critical component of angiogenesis, was significantly increased in response to thalidomide treatment (P
Resumo:
The pharmacotherapy currently recommended by the American College of Cardiology and the American Heart Association for heart failure (HF) is a diuretic, an angiotensin-converting enzyme inhibitor (ACEI), a β-adrenoceptor antagonist and (usually) digitalis. This current treatment of HF may be improved by optimising the dose of ACEI used, as increasing the dose of lisinopril increases its benefits in HF. Selective angiotensin receptor-1 (AT1) antagonists are effective alternatives for those who cannot tolerate ACEIs. AT1 antagonists may also be used in combination with ACEIs, as some studies have shown cumulative benefits for the combination. In addition to being used in Stage IV HF patients, in whom it has a marked benefit, spironolactone should be studied in less severe HF and in the presence of β-blockers. The use of carvedilol, extended-release metoprolol and bisoprolol should be extended to severe HF patients as these agents have been shown to decrease mortality in this group. The ancillary properties of carvedilol, particularly antagonism at prejunctional β-adrenoceptors, may give it additional benefits to selective β1-adrenoceptor antagonists. Celiprolol and bucindolol are not the β-blockers of choice in HF, as they do not decrease mortality. Although digitalis does not reduce mortality, it remains the only option for a long-term positive inotropic effect, as the long-term use of the phosphodiesterase inhibitors is associated with increased mortality. The calcium sensitising drug levosimendan may be useful in the hospital treatment of decompensated HF to increase cardiac output and improve dyspnoea and fatigue. The antiarrhythmic drug amiodarone should probably be used in patients at high risk of arrhythmic or sudden death, although this treatment may soon be superseded by the more expensive implanted cardioverter defibrillators, which are probably more effective and have fewer side effects. The natriuretic peptide nesiritide has recently been introduced for the hospital treatment of decompensated HF. Novel drugs that may be beneficial in the treatment of HF include the vasopeptidase inhibitors and the selective endothelin-A receptor antagonists but these require much more investigation. However, disappointing results have been obtained in a large clinical trial of the tumour necrosis factor α antagonist etanercept, where no likelihood of a difference between placebo and etanercept was observed. Small clinical trials with recombinant growth hormone to thicken ventricles in dilated cardiomyopathy have given variable results.
Resumo:
Mast cells are mobile granule-containing secretory cells that are distributed preferentially about the microvascular endothelium in oral mucosa and dental pulp. The enzyme profile of mast cells in oral tissues resembles that of skin, with most mast cells expressing the serine proteases tryptase and chymase. Mast cells in oral tissues contain the pro-inflammatory cytokine tumour necrosis factor-alpha in their granules, and release of this promotes leukocyte infiltration during evolving inflammation in several conditions, including lichen planus, gingivitis, pulpitis, and periapical inflammation, through induction of endothelial-leukocyte adhesion molecules. Mast cell synthesis and release of other mediators exerts potent immunoregulatory effects on other cell types, while several T-lymphocyte-derived cytokines influence mast cell migration and mediator release. Mast cell proteases may contribute to alterations in basement membranes in inflammation in the oral cavity, such as the disruptions that allow cytotoxic lymphocytes to enter the epithelium in oral lichen planus. A close relationship exists among mast cells, neural elements, and laminin, and this explains the preferential distribution of mast cells in tissues. Mast cells are responsive to neuropeptides and, through their interaction with neural elements, form a neural immune network with Langerhans cells in mucosal tissues. This facilitates mast cell degranulation in response to a range of immunological and non-immunological stimuli. Because mast cells play a pivotal role in inflammation, therapies that target mast cell functions could have value in the treatment of chronic inflammatory disorders in the oral cavity.