48 resultados para Supressão adrenal
Resumo:
Pheochromocytomas are tumors of the adrenal medulla originating in the chromaffin cells derived from the neural crest. Ten % of these tumors are associated with the familial cancer syndromes multiple endocrine neoplasia type 2, von Hippel-Lindau disease (VHL), and rarely, neurofibromatosis type 1, in which germ-line mutations have been identified in RET, VHL, and NF1, respectively. In both the sporadic and familial forms of pheochromocytoma, allelic loss at 1p, 3p, 17p, and 22q has been reported, yet the molecular pathogenesis of these tumors is largely unknown. Allelic loss at chromosome 1p has also been reported in other endocrine tumors, such as medullary thyroid cancer and tumors of the parathyroid gland, as well as in tumors of neural crest origin including neuroblastoma and malignant melanoma, In this study, we performed fine structure mapping of deletions at chromosome 1p in familial and sporadic pheochromocytomas to identify discrete regions likely housing tumor suppressor genes involved in the development of these tumors. Ten microsatellite markers spanning a region of similar to 70 cM (Ipter to 1p34.3) were used to screen 20 pheochromocytomas from 19 unrelated patients for loss of heterozygosity (LOH). LOH was detected at five or more loci in 8 of 13 (61%)sporadic samples and at five or more loci in four of five (80%) tumor samples from patients with multiple endocrine neoplasia type 2. No LOH at 1p was detected in pheochromocytomas from two VHL patients, Analysis of the combined sporadic and familial tumor data suggested three possible regions of common somatic loss, designated as PCI (D1S243 to D1S244), PC2 (D1S228 to D1S507), and PC3 (D1S507 toward the centromere). We propose that chromosome Ip may be the site of at least three putative tumor suppressor loci involved in the tumorigenesis of pheochromocytomas. At least one of these loci, PC2 spanning an interval of <3.8 cM, is Likely to have a broader role in the development of endocrine malignancies.
Resumo:
Principal neurons in the lateral nucleus of the amygdala (LA) exhibit a continuum of firing properties in response to prolonged current injections ranging from those that accommodate fully to those that fire repetitively. In most cells, trains of action potentials are followed by a slow after hyperpolarization (AHP) lasting several seconds. Reducing calcium influx either by lowering concentrations of extracellular calcium or by applying nickel abolished the AHP, confirming it is mediated by calcium influx. Blockade of large conductance calcium-activated potassium channel (BK) channels with paxilline, iberiotoxin, or TEA revealed that BK channels are involved in action potential repolarization but only make a small contribution to the fast AHP that follows action potentials. The fast AHP was, however, markedly reduced by low concentrations of 4-aminopyridine and alpha-dendrotoxin, indicating the involvement of voltage-gated potassium channels in the fast AHP. The medium AHP was blocked by apamin and UCL1848, indicating it was mediated by small conductance calcium-activated potassium channel (SK) channels. Blockade of these channels had no effect on instantaneous firing. However, enhancement of the SK-mediated current by 1-ethyl-2-benzimidazolinone or paxilline increased the early interspike interval, showing that under physiological conditions activation of SK channels is insufficient to control firing frequency. The slow AHP, mediated by non-SK BK channels, was apamin-insensitive but was modulated by carbachol and noradrenaline. Tetanic stimulation of cholinergic afferents to the LA depressed the slow AHP and led to an increase in firing. These results show that BK, SK, and non-BK SK-mediated calcium-activated potassium currents are present in principal LA neurons and play distinct physiological roles.
Resumo:
In many cell types rises in cytosolic calcium, either due to influx from the extracellular space, or by release from an intracellular store activates calcium dependent potassium currents on the plasmalemma. In neurons, these currents are largely activated following calcium influx via voltage gated calcium channels active during the action potentials. Three types of these currents are known: I-c. I-AHP and I-sAHP. These currents can be distinguished by clear differences in their pharmacology and kinetics. Activation of these potassium currents modulates action potential time course and the repetitive firing properties of neurons. Single channel studies have identified two types of calcium-activated potassium channel which can also be separated on biophysical and pharmacological grounds and have been named BK and SK channels. It is now clear that BK channels underlie Ic whereas SK channels underlie I-AHP. The identity of the channels underlying I-sAHP are not known. In this review, we discuss the properties of the different types of calcium-activated potassium channels and the relationship between these channels and the macroscopic currents present in neurons. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Calcium-activated potassium channels are a large family of potassium channels that are found throughout the central nervous system and in many other cell types. These channels are activated by rises in cytosolic calcium largely in response to calcium influx via voltage-gated calcium channels that open during action potentials. Activation of these potassium channels is involved in the control of a number of physiological processes from the firing properties of neurons to the control of transmitter release. These channels form the target for modulation for a range of neurotransmitters and have been implicated in the pathogenesis of neurological and psychiatric disorders. Here the authors summarize the varieties of calcium-activated potassium channels present in central neurons and their defining molecular and biophysical properties.
Resumo:
Establishment of the left-right axis is a fundamental process of vertebrate embryogenesis. Failure to develop left-right asymmetry leads to incorrect positioning and morphogenesis of numerous internal organs, and is proposed to underlie the etiology of several common cardiac malformations. The transcriptional modulator Cited2 is essential for embryonic development: Cited2-null embryos die during gestation with profound developmental abnormalities, including cardiac malformations, exencephaly and adrenal agenesis. Cited2 is also required for normal establishment of the left-right axis; we demonstrate that abnormal heart looping and right atrial and pulmonary isomerism are consistent features of the left-right-patterning defect. We show by gene expression analysis that Cited2 acts upstream of Nodal, Lefty2 and Pitx2 in the lateral mesoderm, and of Lefty1 in the presumptive floor plate. Although abnormal left-right patterning has a major impact on the cardiac phenotype in Cited2-null embryos, laterality defects are only observed in a proportion of these embryos. We have therefore used a combination of high-resolution imaging and three-dimensional (3D) modeling to systematically document the full spectrum of Cited2-associated cardiac defects. Previous studies have focused on the role of Cited2 in cardiac neural crest cell development, as Cited2 can bind the transcription factor Tfap2, and thus affect the expression of Erbb3 in neural crest cells. However, we have identified Cited2-associated cardiac defects that cannot be explained by laterality or neural crest abnormalities. In particular, muscular ventricular septal defects and reduced cell density in the atrioventricular (AV) endocardial cushions are evident in Cited2-null embryos. As we found that Cited2 expression tightly correlated with these sites, we believe that Cited2 plays a direct role in development of the AV canal and cardiac septa. We therefore propose that, in addition to the previously described reduction of cardiac neural crest cells, two other distinct mechanisms contribute to the spectrum of complex cardiac defects in Cited2-null mice; disruption of normal left-right patterning and direct loss of Cited2 expression in cardiac tissues.
Resumo:
The genetic mechanisms responsible for the formation of adrenocortical adenomas which autonomously produce aldosterone are largely unknown, The adrenal renin-angiotensin system has been implicated in the pathophysiology of these tumours, Angiotensin-converting enzyme (ACE) catalyses the generation of angiotensin II, and the insertion/deletion (I/D) polymorphism of the ACE gene regulates up to 50% of plasma and cellular ACE variability in humans. We therefore examined the genotypic and allelic frequency distributions of the ACE gene I/D polymorphism in 55 patients with aldosterone-producing adenoma, APA, (angiotensin-unresponsive APA n = 28, angiotensin-responsive APA n = 27), and 80 control subjects with no family history of hypertension, We also compared the ACE gene I/D polymorphism allelic pattern in matched tumour and peripheral blood DNA in the 55 patients with APA, The frequency of the D allele was 0.518 and 0.512 and the I allele was 0.482 and 0.488 in the APA and control subjects respectively, Genotypic and allelic frequency analysis found no significant differences between the groups, Examination of the matched tumour and peripheral blood DNA samples revealed the loss of the insertion allele in four of the 25 patients who were heterozygous for the ACE I/D genotype. The I/D polymorphism of the ACE gene does not appear to contribute to the biochemical and phenotypic characteristics of APA, however, the deletion of the insertion allele of the ACE gene I/D polymorphism in 16% of aldosterone-producing adenomas may represent the loss of a tumour suppressor gene/s or other genes on chromosome 17q which may contribute to tumorigenesis in APA.
Resumo:
Background-The use of corticosteroids in active Crohn's disease often becomes limited by side effects. Budesonide is a potent corticosteroid with low systemic bioavailability due to an extensive first pass liver metabolism. Aims-To compare the efficacy and safety of two dosage regimens of budesonide and prednisolone in patients with active Crohn's disease affecting the ileum and/or the ascending colon. Patients and methods-One hundred and seventy eight patients were randomised to receive budesonide controlled ileal release (CIR) capsules 9 mg once daily or 4.5 mg twice daily, or prednisolone tablets 40 mg once daily. The treatment period was 12 weeks. The primary efficacy variable was clinical remission, defined as a Crohn's Disease Activity Index (CDAI) of 150 or less. Results-After eight weeks of treatment, remission occurred in 60% of patients receiving budesonide once daily or prednisolone and in 42% of those receiving budesonide twice daily (p=0.062). The presence of glucocorticoid associated side effects was similar in all groups; however, moon face was more common in the prednisolone group (p=0.0005). The highest frequency of impaired adrenal function, as measured by a short ACTH test, was found in the prednisolone group (p=0.0023). Conclusions-Budesonide CIR, administered at 9 mg once daily or 4.5 mg twice daily, is comparable to prednisolone in inducing remission in active Crohn's disease. The single dose administration is as promptly effective as prednisolone and represents a simpler and safer therapeutic approach, with a considerable reduction in side effects.
Resumo:
The mechanisms whereby tissue sensitivity to PRL is controlled are not well understood. Here we report that expression of mRNA and protein for members of the SOCS/CIS/JAB family of cytokine signaling inhibitors is increased by PRL administration in ovary and adrenal gland of the lactating rat deprived of circulating PRL and pups for 24 h but not in mammary gland. Moreover, suckling increases SOCS mRNA in the ovary but not in the mammary gland of pup-deprived rats. Deprivation of PRL and pups for 48 h allows the mammary gland to induce SOCS genes in response to PRL administration, and this is associated with a decrease in basal SOCS-3 mRNA and protein expression to the level seen in other tissues, suggesting that SOCS-3 induced refractoriness related to filling of the gland. In reporter assays, SOCS-1, SOCS-3, and CIS, but not SOCS-2, are able to inhibit transactivation of the STAT 5-responsive beta -lactoglobulin promoter in transient transfection assays. Moreover, suckling results in loss of ovarian and adrenal responsiveness to PRL administered 2 h after commencement of suckling, as determined by STAT 5 gel shift assay. Immunohistochemistry was used to localize the cellular sites of SOCS-3 and CIS protein expression in the ovary and adrenal gland. We propose that induced SOCS-1, SOCS-3, and CIS are actively involved in the cellular inhibitory feedback response to physiological PRL surges in the corpus luteum and adrenal cortex during lactation, but after pup withdrawal, the mammary gland is rendered unresponsive to PRL by increased levels of SOCS-3.
Resumo:
Hypothalamic-pituitary-adrenal axis activation is a hallmark of the stress response. In the case of physical stressors, there is considerable evidence that medullary catecholamine neurones are critical to the activation of the paraventricular nucleus corticotropin-releasing factor cells that constitute the apex of the hypothalamic-pituitary-adrenal axis. In contrast, it has been thought that hypothalamic-pituitary-adrenal axis responses to emotional stressors do not involve brainstem neurones. To investigate this issue we have mapped patterns of restraint-induced neuronal c fos expression in intact animals and in animals prepared with either paraventricular nucleus-directed injections of a retrograde tracer, lesions of paraventricular nucleus catecholamine terminals, or lesions of the medulla corresponding to the A1 or A2 noradrenergic cell groups. Restraint-induced patterns of neuronal activation within the medulla of intact animals were very similar to those previously reported in response to physical stressors, including the fact that most stressor-responsive, paraventricular nucleus-projecting cells were certainly catecholaminergic and probably noradrenergic. Despite this, the destruction of paraventricular nucleus catecholamine terminals with 6-hydroxydopamine did not alter corticotropin-releasing factor cell responses to restraint. However, animals with ibotenic acid lesions encompassing either the A1 or A2 noradrenergic cell groups displayed significantly suppressed corticotropin-releasing factor cell responses to restraint. Notably, these medullary lesions also suppressed neuronal responses in the medial amygdala, an area that is now considered critical to hypothalamic-pituitary-adrenal axis responses to emotional stressors and that is also known to display a significant increase in noradrenaline turnover during restraint. We conclude that medullary neurones influence corticotropin-releasing factor cell responses to emotional stressors via a multisynaptic pathway that may involve a noradrenergic input to the medial amygdala. These results overturn the idea that hypothalamic-pituitary-adrenal axis response to emotional stressors can occur independently of the brainstem. (C) 2001 IBRO. Published by Elsevier Science Ltd. All rights reserved.
Resumo:
It has been hypothesized that the brain categorizes stressors and utilizes neural response pathways that vary in accordance with the assigned category. If this is true, stressors should elicit patterns of neuronal activation within the brain that are category-specific. Data from previous Immediate-early gene expression mapping studies have hinted that this is the case, but interstudy differences in methodology render conclusions tenuous. In the present study, immunolabelling for the expression of c-fos was used as a marker of neuronal activity elicited in the rat brain by haemorrhage, immune challenge, noise, restraint and forced swim. All stressors elicited c-fos expression in 25-30% of hypothalamic paraventricular nucleus corticotrophin-releasing-factor cells, suggesting that these stimuli were of comparable strength, at least with regard to their ability to activate the hypothalamic-pituitary-ad renal axis. In the amygdala, haemorrhage and immune challenge both elicited c-fos expression in a large number of neurons in the central nucleus of the amygdala, whereas noise, restraint and forced swim primarily elicited recruitment of cells within the medial nucleus of the amygdala. In the medulla, all stressors recruited similar numbers of noradrenergic (A1 and A2) and adrenergic (C1 and C2) cells. However, haemorrhage and immune challenge elicited c-fos expression In subpopulations of A1 and A2 noradrenergic cells that were significantly more rostral than those recruited by noise, restraint or forced swim. The present data support the suggestion that the brain recognizes at least two major categories of stressor, which we have referred to as 'physical' and 'psychological'. Moreover, the present data suggest that the neural activation footprint that is left in the brain by stressors can be used to determine the category to which they have been assigned by the brain.
Resumo:
No Abstract
Resumo:
1. Evidence from recent experimental and clinical studies suggests that excessive circulating levels of aldosterone can bring about adverse cardiovascular sequelae independent of the effects on blood pressure. Examples of these sequelae are the development of myocardial and vascular fibrosis in uninephrectomized, salt-loaded rats infused with mineralocorticoids and, in humans, an association of aldosterone with left ventricular hypertrophy, impaired diastolic and systolic function, salt and water retention causing aggravation of congestion in patients with established congestive cardiac failure (CCF), reduced vascular compliance and an increased risk of arrhythmias (resulting from intracardiac fibrosis, hypokalaemia, hypomagnesaemia, reduced baroreceptor sensitivity and potentiation of catecholamine effects). 2. These sequelae of aldosterone excess may contribute to the pathogenesis and worsen the prognosis of CCF and hypertension. 3. The heart and blood vessels may be capable of extra-adrenal aldosterone biosynthesis, raising the possibility that aldosterone may have paracrine or autocrine (and not just endocrine) effects on cardiovascular tissues. 4. The high prevalence of CCF, which is associated with secondary aldosteronism, and primary aldosteronism (PAL; recently recognized to be a much more common cause of hypertension than was previously thought) argue for an important role for aldosterone excess as a cause of cardiovascular injury. 5. The recognition of non-blood pressure-dependent adverse sequelae of aldosterone excess raises the question as to whether normotensive individuals with PAL, who have been detected as a result of genetic or biochemical screening among families with inherited forms of PAL, are at excess risk of cardiovascular events. 6. Provided that patients are carefully investigated in order to permit the appropriate selection of specific surgical (laparoscopic adrenalectomy for PAL that lateralizes on adrenal venous sampling) or medical (treatment with aldosterone antagonist medications) management and safety considerations for the use of aldosterone antagonists are kept in mind, the appreciation of a widening role for aldosterone in cardiovascular disease should provide a substantially better outlook for many patients with CCF and hypertension.
Resumo:
Objective: To review the common clinical presentations, investigations and final diagnosis of children presenting with genital ambiguity. Methodology: Retrospective search of the Royal Children's Hospital, Brisbane, Australia, medical records and personal medical database of one of the authors (MJT) between 1982 and 1999. Results: Fifty-one children aged 0.1-;14 (mean 3.9) years were identified. Twenty-two cases had a 46XX karyotype, and commonly presented with an enlarged phallus (77.2%), urogenital sinus (63.6%) and labioscrotal fold(s) (40.9%). Congenital adrenal hyperplasia (CAH) was the most common final diagnosis (72.7%) . Twenty-nine cases of genital ambiguity had a 46XY karyotype and commonly presented with palpable gonad(s) (75.8%), undescended testes (51.7%), penoscrotal hypospadias (51.7%) and a small phallus (41.3%). Androgen insensitivity and gonadal dysgenesis were the commonest final diagnosis both occurring at a frequency of 17.2%. Conclusions: The results emphasize the importance of CAH as the most common diagnosis in 46XX cases presenting with ambiguous genitalia. Those with 46XY had a wider range of diagnoses. Despite thorough investigation, 23.5% had no definite final diagnosis made.