23 resultados para Supine
Resumo:
Study Design. Survey of intraobserver and interobserver measurement variability. Objective. To assess the use of reformatted computerized tomography (CT) images for manual measurement of coronal Cobb angles in idiopathic scoliosis. Summary of Background Data. Cobb angle measurements in idiopathic scoliosis are traditionally made from standing radiographs, whereas CT is often used for assessment of vertebral rotation. Correlating Cobb angles from standing radiographs with vertebral rotations from supine CT is problematic because the geometry of the spine changes significantly from standing to supine positions, and 2 different imaging methods are involved. Methods. We assessed the use of reformatted thoracolumbar CT images for Cobb angle measurement. Preoperative CT of 12 patients with idiopathic scoliosis were used to generate reformatted coronal images. Five observers measured coronal Cobb angles on 3 occasions from each of the images. Intraobserver and interobserver variability associated with Cobb measurement from reformatted CT scans was assessed and compared with previous studies of measurement variability using plain radiographs. Results. For major curves, 95% confidence intervals for intraobserver and interobserver variability were +/- 6.6 degrees and +/- 7.7 degrees, respectively. For minor curves, the intervals were +/- 7.5 degrees and +/- 8.2 degrees, respectively. Intraobserver and interobserver technical error of measurement was 2.4 degrees and 2.7 degrees, with reliability coefficients of 88% and 84%, respectively. There was no correlation between measurement variability and curve severity. Conclusions. Reformatted CT images may be used for manual measurement of coronal Cobb angles in idiopathic scoliosis with similar variability to manual measurement of plain radiographs.
Resumo:
Reproduction of a previously presented elbow position is affected by changes in head position. As movement of the head is associated with local biomechanical changes, the aim of the present study was to determine if illusory changes in head position could induce similar effects on the reproduction of elbow position. Galvanic vestibular stimulation (GVS) was applied to healthy subjects in supine lying. The stimulus was applied during the presentation of an elbow position, which the subject then reproduced without stimulation. In the first study, 13 subjects received 1.5 mA stimuli, which caused postural sway in standing, confirming that the firing of vestibular afferents was affected, but no illusory changes in head position were reported. In the second study, 13 subjects received 2.0-3.0 mA GVS. Six out of 13 subjects reported consistent illusory changes in head position, away from the side of the anode. In these subjects, anode right stimulation induced illusory left lateral flexion and elbow joint position error towards extension (p=0.03), while anode left tended to have the opposite effect (p=0.16). The GVS had no effect on error in subjects who did not experience illusory head movement with either 1.5 mA stimulus (p=0.8) or 2.0-3.0 mA stimulus (p=0.7). This study demonstrates that the accuracy of elbow repositioning is affected by illusory changes in head position. These results support the hypothesis that the perceived position of proximal body segments is used in the planning and performance of accurate upper limb movements.
Resumo:
Question Do different sitting postures require different levels of pelvic floor and abdominal muscle activity in healthy women? Design Observational study. Participants Eight parous women with no pelvic floor dysfunction. Outcome measures Bilateral activity of pelvic floor muscles (assessed vaginally) and two abdominal muscles, obliquus internus abdominis and obliquus externus abdominis, during three sitting postures. Results There was a significant increase in pelvic floor muscle activity from slump supported sitting (mean 7.2% maximal voluntary contraction, SD 4.8) to both upright unsupported sifting (mean 12.6% maximal voluntary contraction, SD 7.8) (p = 0.01) and very tall unsupported sitting (mean 24.3% maximal voluntary contraction, SD 14.2) (p = 0.004). Activity in both abdominal muscles also increased but did not reach statistical significance. Conclusion Both unsupported sitting postures require greater pelvic floor muscle activity than the supported sitting posture.
Highly demanding resistive vibration exercise program is tolerated during 56 days of strict bed-rest
Resumo:
Several studies have tried to find countermeasures against musculoskeletal de-conditioning during bed-rest, but none of them yielded decisive results. We hypothesised that resistive vibration exercise (RVE) might be a suitable training modality. We have therefore carried out a bed-rest study to evaluate its feasibility and efficacy during 56 days of bed-rest. Twenty healthy male volunteers aged 24 to 43 years were recruited and, after medical check-ups, randomised to a non-exercising control (Ctrl) group or a group that performed RVE 11 times per week. Strict bed-rest was controlled by video surveillance. The diet was controlled. RVE was performed in supine position, with a static force component of about twice the body weight and a smaller dynamic force component. RVE comprised four different units (squats, heel raises, toe raises, kicks), each of which lasted 60 - 100 seconds. Pre and post exercise levels of lactate were measured once weekly. Body weight was measured daily on a bed scale. Pain questionnaires were obtained in regular intervals during and after the bed-rest. Vibration frequency was set to 19 Hz at the beginning and progressed to 25.9 Hz (SD 1.9) at the end of the study, suggesting that the dynamic force component increased by 90%. The maximum sustainable exercise time for squat exercise increased from 86 s (SD 21) on day 11 of the BR to 176 s (SD 73) on day 53 (p = 0.006). On the same days, post-exercise lactate levels increased from 6.9 mmol/l (SD2.3) to 9.2 mmol/l (SD 3.5, p = 0.01). On average, body weight was unchanged in both groups during bed-rest, but single individuals in both groups depicted significant weight changes ranging from -10% to + d10% (p < 0.001). Lower limb pain was more frequent during bed-rest in the RVE subjects than in Ctrl (p = 0.035). During early recovery, subjects of both groups suffered from muscle pain to a comparable extent, but foot pain was more common in Ctrl than in RVE (p = 0.013 for plantar pain, p = 0.074 for dorsal foot pain). Our results indicate that RVE is feasible twice daily during bed-rest in young healthy males, provided that one afternoon and one entire day per week are free. Exercise progression, mainly by progression of vibration frequency, yielded increases in maximum sustainable exercise time and blood lactate. In conclusion, RVE as performed in this study, appears to be safe.
Resumo:
A novel surface electromyographic (EMG) technique was recently described for the detection of deep cervical flexor muscle activity. Further investigation of this technique is warranted to ensure EMG activity from neighbouring muscles is not markedly influencing the signals recorded. This study compared deep cervical flexor (DCF) muscle activity with the activity of surrounding neck and jaw muscles during various anatomical movements of the neck and jaw in 10 volunteer subjects. DCF EMG activity was recorded with custom electrodes inserted via the nose and fixed by suction to the posterior mucosa of the oropharynx. Surface electrodes were placed over the sternocleidomastoid, anterior scalene, masseter and suprahyoid muscles. Positioned in supine, subjects performed isometric cranio-cervical flexion, cervical flexion, right and left cervical rotation,jaw clench and resisted jaw opening. Across all movements examined, EMG amplitude of the DCF muscles was greatest during neck movements that would require activity of the DCF muscles, particularly during cranio-cervical flexion, their primary anatomical action. The actions of jaw clench and resisted jaw opening demonstrated significantly less DCF EMG activity than the cranio-cervical flexion action (p < 0.05). Across all other movements, the neighbouring neck and jaw muscles demonstrated greatest EMG amplitude during their respective primary anatomical actions, which occurred in the absence of increased EMG amplitude recorded from the DCF muscles. The finding of substantial EMG activity of the DCF muscles only during neck actions that would require their activity, particularly cranio-cervical flexion, and not during actions involving the jaw, provide further assurance that the majority of myoelectric signals detected from the nasopharyngeal electrode are from the DCF muscles. (C) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Exercise brachial blood pressure ( BP) predicts mortality, but because of wave reflection, central ( ascending aortic) pressure differs from brachial pressure. Exercise central BP may be clinically important, and a noninvasive means to derive it would be useful. The purpose of this study was to test the validity of a noninvasive technique to derive exercise central BP. Ascending aortic pressure waveforms were recorded using a micromanometer-tipped 6F Millar catheter in 30 patients (56 +/- 9 years; 21 men) undergoing diagnostic coronary angiography. Simultaneous recordings of the derived central pressure waveform were acquired using servocontrolled radial tonometry at rest and during supine cycling. Pulse wave analysis of the direct and derived pressure signals was performed offline (SphygmoCor 7.01). From rest to exercise, mean arterial pressure and heart rate were increased by 20 +/- 10 mm Hg and 15 +/- 7 bpm, respectively, and central systolic BP ranged from 77 to 229 mm Hg. There was good agreement and high correlation between invasive and noninvasive techniques with a mean difference (+/- SD) for central systolic BP of -1.3 +/- 3.2 mm Hg at rest and -4.7 +/- 3.3 mm Hg at peak exercise ( for both r=0.995; P < 0.001). Conversely, systolic BP was significantly higher peripherally than centrally at rest (155 +/- 33 versus 138 +/- 32mm Hg; mean difference, -16.3 +/- 9.4mm Hg) and during exercise (180 +/- 34 versus 164 +/- 33 mm Hg; mean difference, -15.5 +/- 10.4 mm Hg; for both P < 0.001). True myocardial afterload is not reliably estimated by peripheral systolic BP. Radial tonometry and pulse wave analysis is an accurate technique for the noninvasive determination of central BP at rest and during exercise.
Resumo:
Caudal block results in a motor blockade that can reduce abdominal wall tension. This could interact with the balance between chest wall and lung recoil pressure and tension of the diaphragm, which determines the static resting volume of the lung. On this rationale, we hypothesised that caudal block causes an increase in functional residual capacity and ventilation distribution in anaesthetised children. Fifty-two healthy children (15-30 kg, 3-8 years of age) undergoing elective surgery with general anaesthesia and caudal block were studied and randomly allocated to two groups: caudal block or control. Following induction of anaesthesia, the first measurement was obtained in the supine position (baseline). All children were then turned to the left lateral position and patients in the caudal block group received a caudal block with bupivacaine. No intervention took place in the control group. After 15 nun in the supine position, the second assessment was performed. Functional residual capacity and parameters of ventilation distribution were calculated by a blinded reviewer. Functional residual capacity was similar at baseline in both groups. In the caudal block group, the capacity increased significantly (p < 0.0001) following caudal block, while in the control group, it remained unchanged. In both groups, parameters of ventilation distribution were consistent with the changes in functional residual capacity. Caudal block resulted in a significant increase in functional residual capacity and improvement in ventilation homogeneity in comparison with the control group. This indicates that caudal block might have a beneficial effect on gas exchange in anaesthetised, spontaneously breathing preschool-aged children with healthy lungs.
Resumo:
The first derivative of pressure over time (dP/dt) is a marker of left ventricular (LV) systolic function that can be assessed during cardiac catheterization and echocardiography. Radial artery dP/dt (Radial-dP/dt) has been proposed as a possible marker of LV systolic function (Nichols & O’Rourke, McDonald’s Blood Flow in Arteries) and we sought to test this hypothesis. Methods:We compared simultaneously recorded RadialdP/ dt (by high-fidelity tonometry) with LV-dP/dt (by highfidelity catheter and echocardiography parameters analogous to LV-dP/dt) in patients without aortic valve disease. In study 1, beat to beat Radial-dP/dt and LV-dP/dt were recorded at rest and during supine exercise in 12 males (aged 61±12 years) undergoing cardiac catheterization. In study 2, 2D-echocardiography and Radial-dP/dt were recorded in 59 patients (43 men; aged 64±10 years) at baseline and peak dobutamine-induced stress. Three measures at the basal septum were taken as being analogous to LV-dP/dt: (1) peak systolic strain rate, (2) strain rate (SR-dP/dt), and (3) tissue velocity during isovolumic contraction. Results: Study 1; there was a significant difference between resting LV-dP/dt (1461±383 mmHg/s) and Radial-dP/dt (1182±319 mmHg/s; P < 0.001), and a poor, but statistically significant, correlation between the variables (R2 = 0.006; P < 0.001) due to the high number of data points compared (n = 681). Similar results were observed during exercise. Study 2; there was a moderate association between baseline Radial-dP/dt and SRdP/ dt (R2 =−0.17; P < 0.01), but no significant relationship between Radial-dP/dt and all other echocardiographic measures analogous to LV-dP/dt at rest or peak stress (P > 0.05). Conclusion: The radial pressurewaveform is not a reliable marker of LV contractility.