72 resultados para Sugarcane - Juice clarification
Resumo:
In an attempt to better understand the microbial diversity and endosymbiotic microbiota of the pink sugarcane mealybug (PSMB) Saccharicoccus sacchari Cockerell (Homoptera: Pseudococcidae), culture-independent approaches, namely PCR, a 16S rDNA clone library, and temperature gradient gel electrophoresis (TGGE) were used. Previous work has indicated that the acetic acid bacteria Gluconacetobacter sacchari, Gluconacetobacter diazotrophicus, and Gluconacetobacter liquefaciens represent only a small proportion of the microbial community of the PSMB. These findings were supported in this study by TGGE, where no bands representing G. sacchari, G. diazotrophicus, and G. liquefaciens on the acrylamide gel could be observed following electrophoresis, and by a 16S rDNA clone library study, where no clones with the sequence of an acetic acid bacterium were found. Instead, TGGE revealed that the mealybug microbial community was dominated by beta- and gamma-Proteobacteria. The dominant band in TGGE gels found in a majority of the mealybug samples was most similar, according to BLAST analysis, to the beta-symbiont of the craw mealybug Antonina crawii and to Candidatus Tremblaya princeps, an endosymbiont from the mealybug Paracoccus nothofagicola. The sequences of other dominant bands were identified as gamma-Proteobacteria, and were most closely related to uncultured bacterial clones obtained from soil samples. Mealybugs collected from different areas in Queensland, Australia, were found to produce similar TGGE profiles, although there were a few exceptions. A 16S rDNA clone library based on DNA extracted from a mealybug collected from sugarcane in the Burdekin region in Queensland, Australia, indicated very low levels of diversity among mealybug microbial populations. All sequenced clones were most closely related to the same members of the gamma-Proteobacteria, according to BLAST analysis.
Resumo:
Arbuscular mycorrhizal (AM) fungi, commonly found in long-term cane-growing fields in northern Queensland, are linked with both negative and positive growth responses by sugarcane ( Saccharum spp.), depending on P supply. A glasshouse trial was established to examine whether AM density might also have an important influence on these growth responses. Mycorrhizal spores ( Glomus clarum), isolated from a long-term cane block in northern Queensland, were introduced into a pasteurised low-P cane soil at 5 densities ( 0, 0.06, 0.25, 1, 4 spores/g soil) and with 4 P treatments ( 0, 8.2, 25, and 47 mg/kg). At 83 days after planting, sugarcane tops responded positively to P fertilizer, although responses attributable to spore density were rarely observed. In one case, addition of 4 spores/g led to a 53% yield response over those without AM at 8 mg P/kg, or a relative benefit of 17 mg P/kg. Root colonisation was reduced for plants with nil or 74 mg P/kg. For those without AM, P concentration in the topmost visible dewlap ( TVD) leaf increased significantly with fertiliser P (0.07 v. 0.15%). However, P concentration increased further with the presence of AM spores. Irrespective of AM, the critical P concentration in the TVD leaf was 0.18%. This study confirms earlier reports that sugarcane is poorly responsive to AM. Spore density, up to 4 spores/g soil, appears unable to influence this responsiveness, either positively or negatively. Attempts to gain P benefits by increasing AM density through rotation seem unlikely to lead to yield increases by sugarcane. Conversely, sugarcane grown in fields with high spore densities and high plant-available P, such as long-termcane-growing soils, is unlikely to suffer a yield reduction from mycorrhizal fungi.
Resumo:
Molecular diversity among 421 clones of cultivated sugarcane and wild relatives was analysed using AFLP markers. Of these clones, 270 were Saccharum officinarum and 151 were either cultivars produced by the Australian breeding program or important parents used in the breeding program. The S. of. cinarum clones were obtained from a collection that contained clones from all the major regions where S. of. cinarum is grown. Five AFLP primer combinations generated 657 markers ofwhich 614 were polymorphic. All clones contained a large number of markers; a result of the polyploid nature and heterozygosity of the genome. S. of. cinarum clones from New Guinea displayed greater diversity than S. of. cinarum clones from other regions. This is in agreement with the hypothesis that New Guinea is the centre of origin of this species. The S. of. cinarum clones from Hawaii and Fiji formed a separate group and may correspond to clones that have been introgressed with other members of the ` Saccharum complex'. Greater diversity was found in the cultivars than in the S. of. cinarum clones due to the introgression of S. spontaneum chromatin. These cultivars clustered as expected based on pedigree. The major contribution of clones QN66- 2008 and Nco310 to Australian sugarcane cultivars divided the cultivars into 2 main groups. Although only a fewS. of. cinarum clones are known to have been used in the breeding of current cultivars, about 90% of markers present in the S. of. cinarum clone collection ( 2n= 80) were also present in the cultivar collection. This suggests that most of the observed genetic diversity in S. of. cinarum has been captured in Australian sugarcane germplasm.
Resumo:
As resistance genes have been shown to contain conserved motifs and cluster in many plant genomes, the identification of resistance gene analogues can be used as a strategy for both the discovery of DNA markers linked to disease resistance loci and the map-based cloning of disease resistance genes. Sugarcane suffers from many important diseases and an analysis of resistance gene analogues offers a means to identify DNA markers linked to resistance loci. However, sugarcane has the most complex genome of any crop plant and initially it is important to understand the extent of resistance gene analogue diversity in the sugarcane genome before genetic analysis. We review herein how more than 100 expressed sequence tags with homology to different resistance genes have been identified in sugarcane with many mapped as single-dose restriction fragment length polymorphism markers. Importantly, some of these resistance gene analogues have been shown to be linked to disease resistance genes or disease quantitative trait loci. In an attempt to more efficiently analyse additional resistance gene analogues in sugarcane, we report on experiments aimed at investigating the molecular diversity of several resistance gene analogue families using a modified form of a technique termed Ecotilling. Using Ecotilling, we were able to rapidly detect single nucleotide polymorphisms in fragments amplified by PCR from four different resistance gene analogue families, SoRP1D, SoPTO, SoXa21 and SoHs1pro-1. An analysis of a diverse set of sugarcane varieties, including modern sugarcane cultivars and several S. officinarum and S. spontaneum clones, indicated that all amplicons, apart from SoHs1pro-1, contained significant polymorphism within the gene region studied. However, a comparison among these sugarcane clones, including between the parents of two sugarcane mapping populations, indicated that most polymorphisms were multi-dose, not single-dose, preventing their genetic map location or association with disease susceptibility or resistance from being determined.
Resumo:
Sugarcane grown in the Ord River district of Western Australia has lower sucrose content than expected from earlier trials and experience in other irrigated districts. High temperatures have been hypothesised as a possible cause. The effects of high temperature (above 32 degrees C) on growth and carbon partitioning were investigated. A temperature regime of (25-38 degrees C) was compared with (23-33 degrees C). In one experiment, 7-month-old plants of cvv. Q117 and Q158 were subjected to the treatments for 2 months. In another experiment, the plants were allowed to regrow (ratoon) for 6 months. In both experiments, the higher temperature resulted in more, shorter internodes and higher moisture content. Most internodes from plants in the higher temperature treatment had lower sucrose content than internodes from the lower temperature. On a dry mass basis the internodes from the plants in the higher temperature had proportionately more fibre and hexoses but lower sucrose. Combined with an increased number of nodes in a stem of similar or shorter length this would result in higher stalk fibre and lower sucrose content. The data provided evidence that sugarcane partitions less carbon to stored sucrose when grown under high compared with low temperatures. The two cultivars partitioned carbon between soluble (sugars) and insoluble (fibre) fractions to different degrees. These experiments also indicate that the current models describing leaf appearance and perhaps sugarcane growth at temperatures above 32 degrees C, in general, need revision.
Resumo:
An international collection of the sugarcane ratoon stunting disease pathogen, Leifsonia xyli subsp. xyli, was analysed to assess genetic diversity. DNA fingerprinting using BOX primers was performed on 105 isolates, comprising 65 Australian isolates and an additional 40 isolates from Indonesia (n = 8), Japan (n = 1), USA (n = 3), Brazil (n = 2), Mali (n = 2), Zimbabwe (n = 13), South Africa (n = 9) and Reunion (n = 2). Sixty-two of these isolates were also screened using ERIC primers. No variation was found among any of the isolates. The intergenic spacer (IGS) region of the ribosomal RNA genes from 54 isolates was screened for sequence variation using single-stranded conformational polymorphism (SSCP), but none was observed. Direct sequencing of the IGS from a subset of nine isolates, representing all of the countries sampled in this study, confirmed the results of the SSCP analysis. Likewise, no sequence variation was found in the 16S ribosomal RNA genes of the same subset. Four Colombian isolates from sugarcane, morphologically similar to L. xyli subsp. xyli, were putatively shown to be an undescribed Agrococcus species of unknown pathogenicity. The lack of genetic variation among L. xyli subsp. xyli isolates, independent of time of sampling, cultivar of isolation, or country of origin, suggests the worldwide spread of a single pathogenic clone, and further suggests that sugarcane cultivars resistant to ratoon stunting disease in one area should retain this property in other regions.
Resumo:
Fiji leaf gall (FLG) is an important virally induced disease in Australian sugarcane. It is confined to southern canegrowing areas, despite its vector, the delphacid planthopper Perkinsiella saccharicida, occurring in all canegrowing areas of Queensland and New South Wales. This disparity between distributions could be a result of successful containment of the disease through quarantine and/or geographical barriers, or because northern Queensland populations of Perkinsiella may be poorer vectors of the disease. These hypotheses were first tested by investigating variation in the ITS2 region of the rDNA fragment among eastern Australian and overseas populations of Perkinsiella. The ITS2 sequences of the Western Australian P. thompsoni and the Fijian P. vitiensis were distinguishable from those of P. saccharicida and there was no significant variation among the 26P. saccharicida populations. Reciprocal crosses of a northern Queensland and a southern Queensland population of P. saccharicida were fertile, so they may well be conspecific. Single vector transmission experiments showed that a population of P. saccharicida from northern Queensland had a higher vector competency than either of two southern Queensland populations. The frequency of virus acquisition in the vector populations was demonstrated to be important in the vector competency of the planthopper. The proportion of infected vectors that transmitted the virus to plants was not significantly different among the populations tested. This study shows that the absence of FLG from northern Queensland is not due to a lack of vector competency of the northern population of P. saccharicida.
Resumo:
The concentration of ammonium-nitrogen (NH4+-N) frequently exceeds that of nitrate-N (NO3--N) in Australian wet tropical sugarcane soils. The amount of mineral N in soil is the net result of complex processes in the field, so the objective of this experiment was to investigate nitrification and ammonification in these soils under laboratory conditions. Aerobic and saturated incubations were performed for 1 week on 2 wet tropical soils. Net NO3--N increased significantly in both soils during both types of incubation. A second series of aerobic incubations of these soils treated with NH4+-N and inoculated with subtropical nitrifying soils was conducted for 48 days. Nitrification in the wet tropical soils was not significantly affected by inoculation, and virtually all added N was nitrified during the incubation period. Mineral N behaviour of the 48-day incubations was captured with the APSIM-SoilN model. As nitrification proceeded under laboratory conditions and was able to be captured by the model, it was concluded that nitrification processes in the wet tropical soils studied were not different from those in the subtropical soils. Processes that remove NO3- from the soil, such as leaching and denitrification, may therefore be important factors affecting the proportions of NH4+-N and NO3--N measured under field conditions.
Resumo:
Since the 1960s, numerous studies on sugarcane plant regeneration have been reported. Essentially, successful culture and regeneration of plants from protoplasts, cells, callus, and various tissue and organs, have been achieved in this crop. Although plant regeneration from callus cultures had been reported since the 1960s, definitive proof of somatic embryo development was not available until 1983. Since then, considerable progress has been made in understanding and refining somatic embryogenesis and plant regeneration in sugarcane, for which development of an efficient embryogenic system was critical for the application of transgenic technology. Recent research in Australia and South Africa has led to the development of direct somatic embryogenic systems, which may improve transgenesis in sugarcane.
Resumo:
Plant sucrose transporters (SUTs) are members of the glycoside-pentoside-hexuronide (GPH) cation symporter family (TC2.A.2) that is part of the major facilitator superfamily (MFS). All plant SUTs characterized to date function as proton-coupled symporters and catalyze the cellular uptake of sucrose. SUTs are involved in loading sucrose into the phloem and sink tissues, such as seeds, roots and flowers. Because monocots are agriculturally important, SUTs from cereals have been the focus of recent research. Here we present a functional analysis of the SUT ShSUT1 from sugarcane, an important crop species grown for its ability to accumulate high amounts of sucrose in the stem. ShSUT1 was previously shown to be expressed in maturing stems and plays an important role in the accumulation of sucrose in this tissue. Using two-electrode voltage clamping in Xenopus oocytes expressing ShSUT1, we found that ShSUT1 is highly selective for sucrose, but has a relatively low affinity for sucrose (K-0.5 = 8.26 mM at pH 5.6 and a membrane potential of -137 mV). We also found that the sucrose analog sucralose (4,1 ',6 '-trichloro-4,1 ',6 '-trideoxygalactosucrose) is a competitive inhibitor of ShSUT1 with an inhibition coefficient (K-i) of 16.5 mM. The presented data contribute to our understanding of sucrose transport in plants in general and in monocots in particular.
Resumo:
Fiji leaf gall (FLG) caused by Sugarcane Fiji disease virus (SCFDV) is transmitted by the planthopper Perkinsiella saccharicida. FLG is managed through the identification and exploitation of plant resistance. The glasshouse-based resistance screening produced inconsistent transmission results and the factors responsible for that are not known. A series of glasshouse trials conducted over a 2-year period was compared to identify the factors responsible for the erratic transmission results. SCFDV transmission was greater when the virus was acquired by the vector from a cultivar that was susceptible to the virus than when the virus was acquired from a resistant cultivar. Virus acquisition by the vector was also greater when the vector was exposed to the susceptible cultivars than when exposed to the resistant cultivar. Results suggest that the variation in transmission levels is due to variation in susceptibility of sugarcane cultivars to SCFDV used for virus acquisition by the vector.
Resumo:
Little is known about the extent of allelic diversity of genes in the complex polyploid, sugarcane. Using sucrose phosphate synthase (SPS) Gene (SPS) Family III as an example, we have amplified and sequenced a 400 nt region from this gene from two sugarcane lines that are parents of a mapping population. Ten single nucleotide polymorphisms (SNPs) were identified within the 400 nt region of which seven were present in both lines. In the elite commercial cultivar Q165(A), 10 sequence haplotypes were identified, with four haplotypes recovered at 9% or greater frequency. Based on SNP presence, two clusters of haplotypes were observed. In IJ76-514, a Saccharum officinarum accession, 8 haplotypes were identified with 4 haplotypes recovered at 13% or greater frequency. Again, two clusters of haplotypes were observed. The results suggest that there may be two SPS Gene Family III genes per genome in sugarcane, each with different numbers of different alleles. This suggestion is supported by sequencing results in an elite parental sorghum line, 403463-2-1, in which 4 haplotypes, corresponding to two broad types, were also identified. Primers were designed to the sugarcane SNPs and screened over bulked DNA from high and low Sucrose-containing progeny from a cross between Q165(A) and IJ76-514. The SNP frequency did not vary in the two bulked DNA samples, suggesting that these SNPs from this SPS gene family are not associated with variation in sucrose content. Using an ecotilling approach, two of the SPS Gene Family III haplotypes were mapped to two different linkage groups in homology group 1 in Q165(A). Both haplotypes mapped near QTLs for increased sucrose content but were not themselves associated with any sugar-related trait.
Resumo:
Seven species of eriophyoid mites (Acari: Eriophyoidea) are known to attack sugarcane plants (Saccharum spp., Poaceae) and related grasses in various parts of the world, but except for unconfirmed reports of Aceria sacchari and Abacarus sacchari, Australia had been thought to be free of these pests. Herein, Abacarus queenslandiensis n. sp. (Eriophyidae), vagrant on leaf surfaces of sugarcane in Australia, is described. Also, Cathetacarus n. gen. is erected for the distinctive mite, Catarhinus spontaneae Mohanasundaram, 1984. In addition, a key to the eriophyoid mites known to occur on sugarcane plants in the world is given.
Resumo:
A new steroidal saponin, shatavarin V, (3-O-{[alpha-L-rhamnopyranosy](1-2)][beta-D-glucopyranosyl(1 -> 4)]-beta-D-glucopyranosyl}-(25S)-5 beta-spirostan-3 beta-ol), was isolated from the roots of Asparagus racemosus by RP-HPLC, and its structure determined by 1D and 2D NMR studies. This data permits clarification of the structures reported for several known saponins: asparinins A and B; asparosides A and B; curillin H; curillosides G and H and shavatarins I and IV. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Sugarcane crop residues ('trash') have the potential to supply nitrogen (N) to crops when they are retained on the soil surface after harvest. Farmers should account for the contribution of this N to crop requirements in order to avoid over-fertilisation. In very wet tropical locations, the climate may increase the rate of trash decomposition as well as the amount of N lost from the soil-plant system due to leaching or denitrification. A field experiment was conducted on Hydrosol and Ferrosol soils in the wet tropics of northern Australia using N-15-labelled trash either applied to the soil surface or incorporated. Labelled urea fertiliser was also applied with unlabelled surface trash. The objective of the experiment was to investigate the contribution of trash to crop N nutrition in wet tropical climates, the timing of N mineralisation from trash, and the retention of trash N in contrasting soils. Less than 6% of the N in trash was recovered in the first crop and the recovery was not affected by trash incorporation. Around 6% of the N in fertiliser was also recovered in the first crop, which was less than previously measured in temperate areas (20-40%). Leaf samples taken at the end of the second crop contined 2-3% of N from trash and fertilizer applied at the beginning of the experiment. Although most N was recovered in the 0-1.5 m soil layer there was some evidence of movement of N below this depth. The results showed that trash supplies N slowly and in small amounts to the succeeding crop in wet tropics sugarcane growing areas regardless of trash placement (on the soil surface or incorporated) or soil type, and so N mineralisation from a single trash blanket is not important for sugarcane production in the wet tropics.