64 resultados para Stream macroalgae


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In many online applications, we need to maintain quantile statistics for a sliding window on a data stream. The sliding windows in natural form are defined as the most recent N data items. In this paper, we study the problem of estimating quantiles over other types of sliding windows. We present a uniform framework to process quantile queries for time constrained and filter based sliding windows. Our algorithm makes one pass on the data stream and maintains an E-approximate summary. It uses O((1)/(epsilon2) log(2) epsilonN) space where N is the number of data items in the window. We extend this framework to further process generalized constrained sliding window queries and proved that our technique is applicable for flexible window settings. Our performance study indicates that the space required in practice is much less than the given theoretical bound and the algorithm supports high speed data streams.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During the past decade the use of stable isotopes to investigate transport pathways of nutrients in aquatic ecosystems has contributed new understanding and knowledge to many aspects of ecology; from the trophic structure of food webs to the spatial extent of nutrient discharges. At the same time aquatic monitoring programs around the world have become more interested in quantifying ecosystem health rather than simply measuring the physical and chemical properties of water (nutrients, pH, temperature and turbidity). A novel technique was initiated in 1998 as part of the development of the Ecosystem Health Monitoring Program in S.E. Queensland Australia (EHMP) using changes in the 15N value of the red macroalgae Catenella nipae, to indicate regions impacted by sewage nitrogen. Sewage plume mapping, using the 15N of C. nipae, has demonstrated that over the past 5 years there has been a large reduction in the magnitude and spatial extent of 15N enrichment at sites close to sewage treatment plants (STPs) discharging into Moreton Bay. This presentation will discuss how the 15N signatures of the C. nipae in the plume at the mouth of the Brisbane River have declined since it was first sampled in 1998 and will evaluate causes that may be responsible for these variations. A series of laboratory experiments were conducted to investigate how environmental conditions influence the 15N signature of C, nipae over the incubation period. These data will be used to discuss the observed in situ decline in 15N in an attempt to determine if the reduction can be attributed solely to improvements in the wastewater discharge.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Protection of the Marine Environment from Sewage

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hydrogen is being seen as an alternative energy carrier to conventional hydrocarbons to reduce greenhouse gas emissions. High efficiency separation technologies to remove hydrogen from the greenhouse gas, carbon dioxide, are therefore in growing demand. Traditional thermodynamic separation systems utilise distillation, absorption and adsorption, but are limited in efficiency at compact scales. Molecular sieve silica (MSS) membranes can perform this separation as they have high permselectivity of hydrogen to carbon dioxide, but their stability under thermal cycling is not well reported. In this work we exposed a standard MSS membrane and a carbonised template MSS (CTMSS) membrane to thermal cycling from 100 to 450°C. The standard MSS and carbonised template CTMSS membranes both showed permselectivity of helium to nitrogen dropping from around 10 to 6 in the first set of cycles, remaining stable until the last test. The permselectivity drop was due to small micropore collapse, which occurred via structure movement during cycling. Simulating single stage membrane separation with a 50:50 molar feed of H2:CO2, H2 exiting the permeate stream would start at 79% and stabilise at 67%. Higher selectivity membranes showed less of a purity drop, indicating the margin at which to design a stable membrane separation unit for CO2 capture.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lactic acid (LA) has significant market potential for many industries including food, cosmetics, pharmaceuticals, medical and biodegradable materials. Production of LA usually begins with the fermentation of glucose but subsequent stages for the enrichment of lactic acid are complex and energy intensive and could be minimised using water selective membrane technology. In this work, we trialled a highly selective hydrostable carbonised template molecular sieve silica (CTMSS) membrane for the dehydration of a 15 vol% aqueous lactic acid solution with 0.1 vol% glucose. CTMSS membrane films were developed by dip-coating ceramic substrates with silica sols made using the acid catalysed sol-gel process. Permeation was performed by feeding LA/glucose solution to the membrane cell at 18°C in a standard pervaporation setup. The membrane showed selective transport of water from the aqueous feed to the permeate while glucose was not detected. CTMSS membrane permeate flux stabilised at 0.2 kg.m-2.hr-1 in 3.9 hours, and reduced LA to lower than 0.2 vol%. Flux through the CTMSS micropores was activated, displaying increased initial flux to 1.58 kg.m-2.hr-1 at 60°C. To enrich a 1 l.min-1 stream to 85% LA in a single stage, a minimum membrane area of 324 m2 would be required at 18°C. Increased operating temperature to 80°C significantly reduced this area to 24 m2 but LA levels in the permeate stream increased to 0.5 vol%. The highly selective CTMSS membrane technology is an ideal candidate for LA purification. CTMSS membrane systems operate stably in aqueous systems leading to potential cost reductions in LA processing for future markets.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This article describes a method to turn astronomical imaging into a random number generator by using the positions of incident cosmic rays and hot pixels to generate bit streams. We subject the resultant bit streams to a battery of standard benchmark statistical tests for randomness and show that these bit streams are statistically the same as a perfect random bit stream. Strategies for improving and building upon this method are outlined.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The subject of management is renowned for its addiction to fads and fashions. Project Management is no exception. The issue of interest for this paper is the establishment of the 'College of Complex Project Managers' and their 'competency standard for complex project managers.' Both have generated significant interest in the Project Management community, and like any other human endeavour they should be subject to critical evaluation. The results of this evaluation show significant flaws in the definition of complex in this case, the process by which the College and its standard have emerged, and the content of the standard. However, there is a significant case for a portfolio of research that extends the existing bodies of knowledge into large-scale complicated (or major) projects that would be owned by the relevant practitioner communities, rather than focused on one organization. Research questions are proposed that would commence this stream of activity towards an intelligent synthesis of what is required to manage in both complicated and truly complex environments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We use theoretical and numerical methods to investigate the general pore-fluid flow patterns near geological lenses in hydrodynamic and hydrothermal systems respectively. Analytical solutions have been rigorously derived for the pore-fluid velocity, stream function and excess pore-fluid pressure near a circular lens in a hydrodynamic system. These analytical solutions provide not only a better understanding of the physics behind the problem, but also a valuable benchmark solution for validating any numerical method. Since a geological lens is surrounded by a medium of large extent in nature and the finite element method is efficient at modelling only media of finite size, the determination of the size of the computational domain of a finite element model, which is often overlooked by numerical analysts, is very important in order to ensure both the efficiency of the method and the accuracy of the numerical solution obtained. To highlight this issue, we use the derived analytical solutions to deduce a rigorous mathematical formula for designing the computational domain size of a finite element model. The proposed mathematical formula has indicated that, no matter how fine the mesh or how high the order of elements, the desired accuracy of a finite element solution for pore-fluid flow near a geological lens cannot be achieved unless the size of the finite element model is determined appropriately. Once the finite element computational model has been appropriately designed and validated in a hydrodynamic system, it is used to examine general pore-fluid flow patterns near geological lenses in hydrothermal systems. Some interesting conclusions on the behaviour of geological lenses in hydrodynamic and hydrothermal systems have been reached through the analytical and numerical analyses carried out in this paper.