21 resultados para Stop Motion
Resumo:
Motion study is an engineering technology that analyzes human body motions. During the past decade (1990-1999) a series of studies investigated the role of motion study in developmental disabilities. This article reviews the literature on the applications of motion study in the field. A historical and conceptual review of motion study leading to the current status of studies is presented followed by a review of the research literature. Two main eras of research focus were identified. The first era (1990-1995) of studies established the superior effectiveness and efficiency of tasks designed with motion study or motion study-related principles over traditional site-based task designs. The second era (1995-1999) of studies examined the interaction between motion study-based task designs and other variables such as choice, preference, and functionally equivalent and competing task designs and communicative alternatives. Our review found that applying motion study principles as an antecedent guide and practice to eliminating or reducing ineffective motions and simplifying effective motions resulted in positive task outcomes with most of the participants.
Resumo:
The purpose of this study was to quantify the sagittal angular displacement of the head (cranio-cervical flexion) for the five incremental stages of the cranio-cervical flexion test (CCFT). Range of cranio-cervical flexion during the CCFT was measured using a digital imaging method in 20 healthy volunteer subjects. The intra- and inter-rater reliability of the digital imaging technique for the assessment of this movement were also examined. The results of this study demonstrated a linear relationship between the incremental pressure targets of the CCFT and the percentages of full range cranio-cervical flexion range of motion (ROM) measured in the supine lying position of the test using a digital imaging technique. A mean of 22.9% full range cranio-cervical flexion was used to reach the first pressure target of the CCFT followed by linear increments up to 76.6% for the last stage of the test. An increasing amount of cranio-cervical flexion ROM was used to achieve the five successive stages of the CCFT reflecting an increasing contractile demand on the deep cervical flexor muscles. Excellent inter-rater (ICC = 0.994) and intra-rater reliability (ICC = 0.988-0.998) were demonstrated for the angular measurements using this digital imaging technique. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
This study was conducted to determine the effect of increasing age on four shoulder movements and to explore the need for normative data for shoulder range of motion (ROM) in people aged 50 years and older. Forty-one participants were conveniently recruited according to four age categories: 50-59 years, 60-69 years, 70-79 years and 80 years and over. Goniometric measurement of bilateral active and passive ROM for flexion, abduction, internal rotation and external rotation was analysed using paired sample t-tests and compared with the norms of the American Academy of Orthopaedic Surgeons (AAOS) using one sample t-tests. Passive ROM was greater than active ROM for all movements (p
Resumo:
In modern magnetic resonance imaging (MRI), patients are exposed to strong, nonuniform static magnetic fields outside the central imaging region, in which the movement of the body may be able to induce electric currents in tissues which could be possibly harmful. This paper presents theoretical investigations into the spatial distribution of induced electric fields and currents in the patient when moving into the MRI scanner and also for head motion at various positions in the magnet. The numerical calculations are based on an efficient, quasi-static, finite-difference scheme and an anatomically realistic, full-body, male model. 3D field profiles from an actively shielded 4T magnet system are used and the body model projected through the field profile with a range of velocities. The simulation shows that it possible to induce electric fields/currents near the level of physiological significance under some circumstances and provides insight into the spatial characteristics of the induced fields. The results are extrapolated to very high field strengths and tabulated data shows the expected induced currents and fields with both movement velocity and field strength. (C) 2003 Elsevier Science (USA). All rights reserved.
Resumo:
Time motion analysis is extensively used to assess the demands of team sports. At present there is only limited information on the reliability of measurements using this analysis tool. The aim of this study was to establish the reliability of an individual observer's time motion analysis of rugby union. Ten elite level rugby players were individually tracked in Southern Hemisphere Super 12 matches using a digital video camera. The video footage was subsequently analysed by a single researcher on two occasions one month apart. The test-retest reliability was quantified as the typical error of measurement (TEM) and rated as either good (10% TEM). The total time spent in the individual movements of walking, jogging, striding, sprinting, static exertion and being stationary had moderate to poor reliability (5.8-11.1% TEM). The frequency of individual movements had good to poor reliability (4.3-13.6% TEM), while the mean duration of individual movements had moderate reliability (7.1-9.3% TEM). For the individual observer in the present investigation, time motion analysis was shown to be moderately reliable as an evaluation tool for examining the movement patterns of players in competitive rugby. These reliability values should be considered when assessing the movement patterns of rugby players within competition.