17 resultados para Steam-pipes
Resumo:
Carbon gasification with steam to produce H-2 and CO is an important reaction widely used in industry for hydrogen generation. Although the literature is vast, the. mechanism for the formation of H-2 is still unclear. In particular, little has, been done to investigate the potential of molecular orbital theory to distinguish different mechanism possibilities. In this work, we used molecular orbital theory to demonstrate a favorable energetic pathway where H2O is first physically adsorbed on the virgin graphite surface with negligible change in molecular structure. Chemisorption occurs via O approaching the carbon edge site with one H atom stretching away from the O in the transition state. This is followed by a local minimum. state in which the stretching H is further disconnected from the O atoms and the remaining OH group is still on the carbon edge site. The disconnected H then pivot around the OH group to bond with the H of the OH group and forms H-2. The O atom remaining on the carbon edge site is subsequently desorbed as CO. The reverse occurs when H-2 reacts with the surface oxygen to produce H2O.
Resumo:
1. Two broiler experiments and a layer experiments were conducted on Kunitz trypsin inhibitor (Kti) soybeans (SB) of low trypsin inhibitor (TI) activity to determine their nutritive value when included as mash in least-cost poultry diets. 2. Experiment 1 compared chick performance on the Kti or raw SB using a commercial full-fat SB meal (FFSBM) and a solvent extracted SB meal (SBM) as controls during a 20 d experimental period. Broiler experiment 2 compared Kti and raw SB, non-steamed, or steam-pelleted with and without DL-methionine supplementation added to every treatment containing 170 g SB/kg. For each broiler experiment the levels of each SB were 70, 120 and 170 g/kg with the control birds fed only 170 g SB/kg. 3. The layer experiment, compared steam-pelleted Kti and raw SB against a non-steamed Kti and raw SB each fed at two levels (70 and 110 g/kg) x 30 replicates from 29 weeks of age for 19 weeks in a completely randomised design. Production parameters were measured when diets were formulated to contain minimum required specifications and calculated apparent metabolisable energy (AME). At the completion of each trial, 2 broiler birds from each cage and 5 layer birds per treatment were killed, weighed, and their liver and pancreas weighed. 4. Both broiler experiments indicated that production parameters on the Kti SB treatments were significantly lower (P < 0.05) than on the two commercial control SB treatments. However, the Kti treatments were superior to the raw SB treatments. 5. Pancreas weight increased with increasing inclusion of both raw and Kti SB, suggesting that a TI was causing the depression in performance. The AME of the Kti SB was similar to that of commercial FFSB meal. After steam conditioning, the raw SB meal AME value of 9.5 MJ/kg dry matter (DM) was improved to 14.1 MJ/kg DM by reduced TI activity, but this AME improvement with TI activity reduction, plus the supplementation with DL-methionine on birds fed the raw SB had no effect (P > 0.05) on any parameter evaluated in experiment 2. 6. The layer experiment showed that hens on the Kti SB treatments had significantly greater live weight gain (LWG), egg weight and daily egg mass than birds given raw SB. A reduced food intake (FI) was observed in the Kti treatments but egg mass was generally similar to that on the FFSB control diet, indicating that Kti SB supported excellent egg production at an inclusion of 110 g/kg. The depressed performance observed for broiler chicks suggest that younger birds are more susceptible to the effects of SB TI.