22 resultados para Statistics for life sciences
Resumo:
Our objectives are to identify the issues that researchers encounter when measuring internal migration in different countries and to propose key indicators that analysts can use to compare internal migration at the 'national' level. We establish the benefits to be gained by a rigorous approach to cross-national comparisons of internal migration and discuss issues that affect such comparisons. We then distinguish four dimensions of internal migration on which countries can be compared and, for each dimension, identify a series of summary measures. We illustrate the issues and measures proposed by comparing migration in Australia and Great Britain.
Resumo:
This article develops a weighted least squares version of Levene's test of homogeneity of variance for a general design, available both for univariate and multivariate situations. When the design is balanced, the univariate and two common multivariate test statistics turn out to be proportional to the corresponding ordinary least squares test statistics obtained from an analysis of variance of the absolute values of the standardized mean-based residuals from the original analysis of the data. The constant of proportionality is simply a design-dependent multiplier (which does not necessarily tend to unity). Explicit results are presented for randomized block and Latin square designs and are illustrated for factorial treatment designs and split-plot experiments. The distribution of the univariate test statistic is close to a standard F-distribution, although it can be slightly underdispersed. For a complex design, the test assesses homogeneity of variance across blocks, treatments, or treatment factors and offers an objective interpretation of residual plot.
Resumo:
We focus on mixtures of factor analyzers from the perspective of a method for model-based density estimation from high-dimensional data, and hence for the clustering of such data. This approach enables a normal mixture model to be fitted to a sample of n data points of dimension p, where p is large relative to n. The number of free parameters is controlled through the dimension of the latent factor space. By working in this reduced space, it allows a model for each component-covariance matrix with complexity lying between that of the isotropic and full covariance structure models. We shall illustrate the use of mixtures of factor analyzers in a practical example that considers the clustering of cell lines on the basis of gene expressions from microarray experiments. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
We consider a mixture model approach to the regression analysis of competing-risks data. Attention is focused on inference concerning the effects of factors on both the probability of occurrence and the hazard rate conditional on each of the failure types. These two quantities are specified in the mixture model using the logistic model and the proportional hazards model, respectively. We propose a semi-parametric mixture method to estimate the logistic and regression coefficients jointly, whereby the component-baseline hazard functions are completely unspecified. Estimation is based on maximum likelihood on the basis of the full likelihood, implemented via an expectation-conditional maximization (ECM) algorithm. Simulation studies are performed to compare the performance of the proposed semi-parametric method with a fully parametric mixture approach. The results show that when the component-baseline hazard is monotonic increasing, the semi-parametric and fully parametric mixture approaches are comparable for mildly and moderately censored samples. When the component-baseline hazard is not monotonic increasing, the semi-parametric method consistently provides less biased estimates than a fully parametric approach and is comparable in efficiency in the estimation of the parameters for all levels of censoring. The methods are illustrated using a real data set of prostate cancer patients treated with different dosages of the drug diethylstilbestrol. Copyright (C) 2003 John Wiley Sons, Ltd.
Resumo:
In microarray studies, the application of clustering techniques is often used to derive meaningful insights into the data. In the past, hierarchical methods have been the primary clustering tool employed to perform this task. The hierarchical algorithms have been mainly applied heuristically to these cluster analysis problems. Further, a major limitation of these methods is their inability to determine the number of clusters. Thus there is a need for a model-based approach to these. clustering problems. To this end, McLachlan et al. [7] developed a mixture model-based algorithm (EMMIX-GENE) for the clustering of tissue samples. To further investigate the EMMIX-GENE procedure as a model-based -approach, we present a case study involving the application of EMMIX-GENE to the breast cancer data as studied recently in van 't Veer et al. [10]. Our analysis considers the problem of clustering the tissue samples on the basis of the genes which is a non-standard problem because the number of genes greatly exceed the number of tissue samples. We demonstrate how EMMIX-GENE can be useful in reducing the initial set of genes down to a more computationally manageable size. The results from this analysis also emphasise the difficulty associated with the task of separating two tissue groups on the basis of a particular subset of genes. These results also shed light on why supervised methods have such a high misallocation error rate for the breast cancer data.