84 resultados para Static Nonlinearity
Resumo:
Recently, there have been several suggestions that weak Kerr nonlinearity can be used for generation of macroscopic superpositions and entanglement and for linear optics quantum computation. However, it is not immediately clear that this approach can overcome decoherence effects. Our numerical study shows that nonlinearity of weak strength could be useful for macroscopic entanglement generation and quantum gate operations in the presence of decoherence. We suggest specific values for real experiments based on our analysis. Our discussion shows that the generation of macroscopic entanglement using this approach is within the reach of current technology.
Resumo:
Objective: To evaluate the effectiveness of a programme of static positional stretches and positioning of the stroke-affected shoulder for maintaining shoulder external rotation and decreasing hemiplegic shoulder pain. Design: Randomized controlled trial with pretest and posttest design. Setting: Inpatient rehabilitation unit. Subjects: Thirty-two participants ( 17 treatment, 15 comparison) with a first time stroke who were admitted for rehabilitation. Interventions: Treatment participants completed a programme of static positional stretches of the stroke-affected shoulder twice daily and positioned the stroke-affected upper limb in an armrest support at all other times when seated. Main measures: The main outcome measures were pain-free range of motion into external rotation, pain in the stroke-affected shoulder at rest and with movement, motor recovery and functional independence. Results: All participants demonstrated a significant loss of external rotation ( P = 0.005) with no significant group differences. All participants demonstrated a significant improvement in motor recovery ( P < 0.01) and functional independence ( P < 0.01) with no significant group differences. There were no significant effects for pain. The comparison group recorded a decrease in mean pain reported with movement from admission to discharge, and the treatment group recorded an increase. Conclusions: Participation in the management programme did not result in improved outcomes. The results of this study do not support the application of the programme of static positional stretches to maintain range of motion in the shoulder. The effect of increasing pain for the treatment group requires further investigation.
Resumo:
This paper has three primary aims: to establish an effective means for modelling mainland-island metapopulations inhabiting a dynamic landscape: to investigate the effect of immigration and dynamic changes in habitat on metapopulation patch occupancy dynamics; and to illustrate the implications of our results for decision-making and population management. We first extend the mainland-island metapopulation model of Alonso and McKane [Bull. Math. Biol. 64:913-958,2002] to incorporate a dynamic landscape. It is shown, for both the static and the dynamic landscape models, that a suitably scaled version of the process converges to a unique deterministic model as the size of the system becomes large. We also establish that. under quite general conditions, the density of occupied patches, and the densities of suitable and occupied patches, for the respective models, have approximate normal distributions. Our results not only provide us with estimates for the means and variances that are valid at all stages in the evolution of the population, but also provide a tool for fitting the models to real metapopulations. We discuss the effect of immigration and habitat dynamics on metapopulations, showing that mainland-like patches heavily influence metapopulation persistence, and we argue for adopting measures to increase connectivity between this large patch and the other island-like patches. We illustrate our results with specific reference to examples of populations of butterfly and the grasshopper Bryodema tuberculata.
Resumo:
We show that the simple quasi-static technique, also called the adiabatic mapping technique, can be used to determine the energetics of rotation of methyl and methoxy groups in amorphous poly(vinyl methyl ether) even though the latter process is too slow to be amenable to direct molecular dynamics simulation. For the methyl group rotation, we find that the mean and standard deviation of the simulated rotational barrier heights agree well with experimental data from quasi-elastic neutron scattering. In the case of the methoxy groups we find that just 4% of the groups contribute more than 90% of the observed dielectric relaxation strength. The groups which make the most contribution are those which, by virtue of their particular conformation and local environment, have two alternative positions of similar energy.
Resumo:
The magnetic field of the Earth has for long been known to influence the behaviour and orientation of a variety of living organisms. Experimental studies of the magnetic sense have, however, been impaired by the lack of a plausible cellular and/or molecular mechanism providing meaningful explanation for detection of magnetic fields by these organisms. Recently, mechanosensitive (MS) ion channels have been implied to play a role in magnetoreception. In this study we have investigated the effect of static magnetic fields (SMFs) of moderate intensity on the activity and gadolinium block of MscL, the bacterial MS channel of large conductance, which has served as a model channel to study the basic physical principles of mechanosensory transduction in living cells. In addition to showing that direct application of the magnetic field decreased the activity of the MscL channel, our study demonstrates for the first time that SMFs can reverse the effect of gadolinium, a well-known blocker of MS channels. The results of our study are consistent with a notion that (1) the effects of SMFs on the MscL channels may result from changes in physical properties of the lipid bilayer due to diamagnetic anisotropy of phospholipid molecules and consequently (2) cooperative superdiamagnetism of phospholipid molecules under influence of SMFs could cause displacement of Gd3+ stop ions from the membrane bilayer and thus remove the MscL channel block.
Resumo:
The results of empirical studies are limited to particular contexts, difficult to generalise and the studies themselves are expensive to perform. Despite these problems, empirical studies in software engineering can be made effective and they are important to both researchers and practitioners. The key to their effectiveness lies in the maximisation of the information that can be gained by examining existing studies, conducting power analyses for an accurate minimum sample size and benefiting from previous studies through replication. This approach was applied in a controlled experiment examining the combination of automated static analysis tools and code inspection in the context of verification and validation (V&V) of concurrent Java components. The combination of these V&V technologies was shown to be cost-effective despite the size of the study, which thus contributes to research in V&V technology evaluation.
Resumo:
The characteristics of high frequency (1000 Hz) acoustic admittance results obtained from normal neonates were described in this study. Participants were 170 healthy neonates (96 boys and 74 girls) aged between 1 and 6 days (mean = 3.26 days, SD = 0.92). Transient evoked otoacoustic emissions (TEOAEs), and 226 Hz and 1000 Hz probe tone tympanograms were obtained from the participants using a Madsen Capella OAE/middle ear analyser. The results showed that of the 170 neonates, 34 were not successfully tested in both ears, 14 failed the TEOAE screen in one or both ears, and 122 (70 boys, 52 girls) passed the TEOAE screen in both ears and also maintained an acceptable probe seal during tympanometry. The 1000 Hz tympanometric data for the 122 neonates (244 ears) showed a single-peaked tympanogram in 225 ears (92.2 %), a flat-sloping tympanogram in 14 ears (5.7 %), a double-peaked tympanogram in 3 ears (1.2 %) and other unusual shapes in 2 ears (0.8 %). There was a significant ear effect, with right ears showing significantly higher mean peak compensated static admittance and tympanometric width, but lower mean acoustic admittance at +200 daPa and gradient than left ears. No significant gender effects or its interaction with ear were found. The normative tympanometric data derived from this cohort may serve as a guide for detecting middle ear dysfunction in neonates.
Resumo:
Granule impact deformation has long been recognised as important in determining whether or not two colliding granules will coalesce. Work in the last 10 years has highlighted the fact that viscous effects are significant in granulation. The relative strengths of different formulations can vary with strain rate. Therefore, traditional strength measurements made at pseudo-static conditions give no indication, even qualitatively, of how materials will behave at high strain rates, and hence are actually misleading when used to model granule coalescence. This means that new standard methods need to be developed for determining the strain rates encountered by granules inside industrial equipment and also for measuring the mechanical properties of granules at these strain rates. The constitutive equations used in theoretical models of granule coalescence also need to be extended to include strain-rate dependent components.
Resumo:
The final-year project for Mechanical & Space Engineering students at UQ often involves the design and flight testing of an experiment. This report describes the design and use of a simple data logger that should be suitable for collecting data from the students' flight experiments. The exercise here was taken as far as the construction of a prototype device that is suitable for ground-based testing, say, the static firing of a hybrid rocket motor.
Resumo:
Studies concerning the processing of natural scenes using eye movement equipment have revealed that observers retain surprisingly little information from one fixation to the next. Other studies, in which fixation remained constant while elements within the scene were changed, have shown that, even without refixation, objects within a scene are surprisingly poorly represented. Although this effect has been studied in some detail in static scenes, there has been relatively little work on scenes as we would normally experience them, namely dynamic and ever changing. This paper describes a comparable form of change blindness in dynamic scenes, in which detection is performed in the presence of simulated observer motion. The study also describes how change blindness is affected by the manner in which the observer interacts with the environment, by comparing detection performance of an observer as the passenger or driver of a car. The experiments show that observer motion reduces the detection of orientation and location changes, and that the task of driving causes a concentration of object analysis on or near the line of motion, relative to passive viewing of the same scene.
Resumo:
We analyze the quantum dynamics of radiation propagating in a single-mode optical fiber with dispersion, nonlinearity, and Raman coupling to thermal phonons. We start from a fundamental Hamiltonian that includes the principal known nonlinear effects and quantum-noise sources, including linear gain and loss. Both Markovian and frequency-dependent, non-Markovian reservoirs are treated. This treatment allows quantum Langevin equations, which have a classical form except for additional quantum-noise terms, to be calculated. In practical calculations, it is more useful to transform to Wigner or 1P quasi-probability operator representations. These transformations result in stochastic equations that can be analyzed by use of perturbation theory or exact numerical techniques. The results have applications to fiber-optics communications, networking, and sensor technology.