22 resultados para Staphylococcus auricularis
Resumo:
The aim of this study was to identify a set of genetic polymorphisms that efficiently divides methicillin-resistant Staphylococcus aureus (MRSA) strains into groups consistent with the population structure. The rationale was that such polymorphisms could underpin rapid real-time PCR or low-density array-based methods for monitoring MRSA dissemination in a cost-effective manner. Previously, the authors devised a computerized method for identifying sets of single nucleoticle polymorphisms (SNPs) with high resolving power that are defined by multilocus sequence typing (MLST) databases, and also developed a real-time PCR method for interrogating a seven-member SNP set for genotyping S. aureus. Here, it is shown that these seven SNPs efficiently resolve the major MRSA lineages and define 27 genotypes. The SNP-based genotypes are consistent with the MRSA population structure as defined by eBURST analysis. The capacity of binary markers to improve resolution was tested using 107 diverse MRSA isolates of Australian origin that encompass nine SNP-based genotypes. The addition of the virulence-associated genes cna, pvl and bbplsdrE, and the integrated plasmids pT181, p1258 and pUB110, resolved the nine SNP-based genotypes into 21 combinatorial genotypes. Subtyping of the SCCmec locus revealed new SCCmec types and increased the number of combinatorial genotypes to 24. It was concluded that these polymorphisms provide a facile means of assigning MRSA isolates into well-recognized lineages.
Resumo:
One approach to microbial genotyping is to make use of sets of single-nucleotide polymorphisms (SNPs) in combination with binary markers. Here we report the modification and automation of a SNP-plus-binary-marker-based approach to the genotyping of Staphylococcus aureus and its application to 391 S. aureus isolates from southeast Queensland, Australia. The SNPs used were arcC210, tpi243, arcC162, gmk318, pta294, tpi36, tpi241, and pta383. These provide a Simpson's index of diversity (D) of 0.95 with respect to the S. aureus multilocus sequence typing database and define 61 genotypes and the major clonal complexes. The binary markers used were pvl, cna, sdrE, pT181, and pUB110. Two novel real-time PCR formats for interrogating these markers were compared. One of these makes use of light upon extension (LUX) primers and biplexed reactions, while the other is a streamlined modification of kinetic PCR using SYBR green. The latter format proved to be more robust. In addition, automated methods for DNA template preparation, reaction setup, and data analysis were developed. A single SNP-based method for ST-93 (Queensland clone) identification was also devised. The genotyping revealed the numerical importance of the South West Pacific and Queensland community-acquired methicillin-resistant S. aureus (MRSA) clones and the clonal complex 239 Aus-1/Aus-2 hospital-associated MRSA. There was a strong association between the community-acquired clones and pvl.
Resumo:
Vancomycin is the preferred parenteral antibiotic for the treatment of all methicillin-resistant Staphylococcus aureus (MRSA) infections, including the newly emerging community-associated MRSA (CA-MRSA) infections. Vancomycin-intermediate nosocomial MRSA strains have developed in vitro and in vivo after exposure to vancomycin. The aim of this study was to determine whether daily serial passage of CA-MRSA strains onto vancomycin-supplemented agar selects for the development of vancomycin resistance. Twelve clinical isolates of the six commonest Australian and US strains of CA-MRSA were serially passaged daily for 25 days onto brain-heart infusion agar plates supplemented with 4 mu g/mL vancomycin and then subcultured for a further 15 days onto antibiotic-free agar to assess the stability of the resistance phenotype. Minimum inhibitory concentrations (MICs) were determined by standard Etest every 5 days from day 0 to day 40. Serial passaging resulted in increased MICs in all strains but the rises were modest, with an increase of < 2 doubling dilutions. All strains remained vancomycin Susceptible throughout the experiment according to Clinical Laboratory Standards Institute criteria. Crown Copyright (c) 2005 Published by Elsevier B.V. on behalf of International Society of Chemotherapy. All rights reserved.
Resumo:
Objective: To describe antimicrobial resistance and molecular epidemiology of methicillin-resistant Staphylococcus aureus (MRSA) isolated in community settings in Australia. Design and setting: Survey of S. aureus isolates collected prospectively Australia-wide between July 2004 and February 2005; results were compared with those of similar surveys conducted in 2000 and 2002. Main outcome measures: Up to 100 consecutive, unique clinical isolates of S. aureus from outpatient settings were collected at each of 22 teaching hospital and five private laboratories from cities in all Australian states and territories. They were characterised by antimicrobial susceptibilities (by agar dilution methods), coagulase gene typing, pulsed-field gel electrophoresis, multilocus sequence typing, SCCmec typing and polymerase chain reaction tests for Panton-Valentine leukocidin (PVL) gene. Results: 2652 S. aureus isolates were collected, of which 395 (14.9%) were MRSA. The number of community-associated MRSA (CA-MRSA) isolates rose from 4.7% (118/2498) of S. aureus isolates in 2000 to 7.3% (194/2652) in 2004 (P=0.001). Of the three major CA-MRSA strains, WA-1 constituted 45/257 (18%) of MRSA in 2000 and 64/395 (16%) in 2004 (P=0.89), while the Queensland (OLD) strain increased from 13/257 (5%) to 58/395 (15%) (P=0.0004), and the south-west Pacific (SWP) strain decreased from 33/257 (13%) to 26/395 (7%) (P=0.01). PVL genes were detected in 90/195 (46%) of CA-MRSA strains, including 5/64 (8%) of WA-1, 56/58 (97%) of OLD, and 25/26 (96%) of SWP strains. Among health care-associated MRSA strains, all AUS-2 and AUS-3 isolates were multidrug-resistant, and UK EMRSA-15 isolates were resistant to ciprofloxacin and erythromycin (50%) or to ciprofloxacin alone (44%). Almost all (98%) of CA-MRSA strains were non-multiresistant. Conclusions: Community-onset MRSA continues to spread throughout Australia. The hypervirulence determinant PVL is often found in two of the most common CA-MRSA strains. The rapid changes in prevalence emphasise the importance of ongoing surveillance.
Isolation and identification of Staphylococcus felis and its role as a Feline urinary tract pathogen