122 resultados para Spin-polarized wave functions


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We demonstrate that the time-dependent projected Gross-Pitaevskii equation (GPE) derived earlier [M. J. Davis, R. J. Ballagh, and K. Burnett, J. Phys. B 34, 4487 (2001)] can represent the highly occupied modes of a homogeneous, partially-condensed Bose gas. Contrary to the often held belief that the GPE is valid only at zero temperature, we find that this equation will evolve randomized initial wave functions to a state describing thermal equilibrium. In the case of small interaction strengths or low temperatures, our numerical results can be compared to the predictions of Bogoliubov theory and its perturbative extensions. This demonstrates the validity of the GPE in these limits and allows us to assign a temperature to the simulations unambiguously. However, the GPE method is nonperturbative, and we believe it can be used to describe the thermal properties of a Bose gas even when Bogoliubov theory fails. We suggest a different technique to measure the temperature of our simulations in these circumstances. Using this approach we determine the dependence of the condensate fraction and specific heat on temperature for several interaction strengths, and observe the appearance of vortex networks. Interesting behavior near the critical point is observed and discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ab initio calculations have been performed to determine the energetics of oxygen atoms adsorbed onto graphene planes and the possible reaction path extracting carbon atorns in the form of carbon monoxide. Front the energetics it is confirmed that this reaction path will not significantly contribute to the gasification of well ordered carbonaceous chars. Modelling results which explore this limit Lire presented. (C) 2002 Elsevier Science Ltd, All rights reserved.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

We consider the effect of quantum spin fluctuations on the ground-state properties of the Heisenberg antiferromagnet on an anisotropic triangular lattice using linear spin-wave (LSW) theory. This model should describe the magnetic properties of the insulating phase of the kappa-(BEDT-TTF)(2)X family of superconducting molecular crystals. The ground-state energy, the staggered magnetization, magnon excitation spectra, and spin-wave velocities are computed as functions of the ratio of the antiferromagnetic exchange between the second and first neighbours, J(2)/J(1). We find that near J(2)/J(1) = 0.5, i.e., in the region where the classical spin configuration changes from a Neel-ordered phase to a spiral phase, the staggered magnetization vanishes, suggesting the possibility of a quantum disordered state. in this region, the quantum correction to the magnetization is large but finite. This is in contrast to the case for the frustrated Heisenberg model on a square lattice, for which the quantum correction diverges logarithmically at the transition from the Neel to the collinear phase. For large J(2)/J(1), the model becomes a set of chains with frustrated interchain coupling. For J(2) > 4J(1), the quantum correction to the magnetization, within LSW theory, becomes comparable to the classical magnetization, suggesting the possibility of a quantum disordered state. We show that, in this regime, the quantum fluctuations are much larger than for a set of weakly coupled chains with non-frustrated interchain coupling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The XSophe-Sophe-XeprView((R)) computer simulation software suite enables scientists to easily determine spin Hamiltonian parameters from isotropic, randomly oriented and single crystal continuous wave electron paramagnetic resonance (CW EPR) spectra from radicals and isolated paramagnetic metal ion centers or clusters found in metalloproteins, chemical systems and materials science. XSophe provides an X-windows graphical user interface to the Sophe programme and allows: creation of multiple input files, local and remote execution of Sophe, the display of sophelog (output from Sophe) and input parameters/files. Sophe is a sophisticated computer simulation software programme employing a number of innovative technologies including; the Sydney OPera HousE (SOPHE) partition and interpolation schemes, a field segmentation algorithm, the mosaic misorientation linewidth model, parallelization and spectral optimisation. In conjunction with the SOPHE partition scheme and the field segmentation algorithm, the SOPHE interpolation scheme and the mosaic misorientation linewidth model greatly increase the speed of simulations for most spin systems. Employing brute force matrix diagonalization in the simulation of an EPR spectrum from a high spin Cr(III) complex with the spin Hamiltonian parameters g(e) = 2.00, D = 0.10 cm(-1), E/D = 0.25, A(x) = 120.0, A(y) = 120.0, A(z) = 240.0 x 10(-4) cm(-1) requires a SOPHE grid size of N = 400 (to produce a good signal to noise ratio) and takes 229.47 s. In contrast the use of either the SOPHE interpolation scheme or the mosaic misorientation linewidth model requires a SOPHE grid size of only N = 18 and takes 44.08 and 0.79 s, respectively. Results from Sophe are transferred via the Common Object Request Broker Architecture (CORBA) to XSophe and subsequently to XeprView((R)) where the simulated CW EPR spectra (1D and 2D) can be compared to the experimental spectra. Energy level diagrams, transition roadmaps and transition surfaces aid the interpretation of complicated randomly oriented CW EPR spectra and can be viewed with a web browser and an OpenInventor scene graph viewer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study the spin-1/2 Heisenberg models on an anisotropic two-dimensional lattice which interpolates between the square lattice at one end, a set of decoupled spin chains on the other end, and the triangular-lattice Heisenberg model in between. By series expansions around two different dimer ground states and around various commensurate and incommensurate magnetically ordered states, we establish the phase diagram for this model of a frustrated antiferromagnet. We find a particularly rich phase diagram due to the interplay of magnetic frustration, quantum fluctuations, and varying dimensionality. There is a large region of the usual two-sublattice Neel phase, a three-sublattice phase for the triangular-lattice model, a region of incommensurate magnetic order around the triangular-lattice model, and regions in parameter space where there is no magnetic order. We find that the incommensurate ordering wave vector is in general altered from its classical value by quantum fluctuations. The regime of weakly coupled chains is particularly interesting and appears to be nearly critical. [S0163-1829(99)10421-1].

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We theoretically study the Hilbert space structure of two neighboring P-donor electrons in silicon-based quantum computer architectures. To use electron spins as qubits, a crucial condition is the isolation of the electron spins from their environment, including the electronic orbital degrees of freedom. We provide detailed electronic structure calculations of both the single donor electron wave function and the two-electron pair wave function. We adopted a molecular orbital method for the two-electron problem, forming a basis with the calculated single donor electron orbitals. Our two-electron basis contains many singlet and triplet orbital excited states, in addition to the two simple ground state singlet and triplet orbitals usually used in the Heitler-London approximation to describe the two-electron donor pair wave function. We determined the excitation spectrum of the two-donor system, and study its dependence on strain, lattice position, and interdonor separation. This allows us to determine how isolated the ground state singlet and triplet orbitals are from the rest of the excited state Hilbert space. In addition to calculating the energy spectrum, we are also able to evaluate the exchange coupling between the two donor electrons, and the double occupancy probability that both electrons will reside on the same P donor. These two quantities are very important for logical operations in solid-state quantum computing devices, as a large exchange coupling achieves faster gating times, while the magnitude of the double occupancy probability can affect the error rate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Individual differences in the variance of event-related potential (ERP) slow wave (SW) measures were examined. SW was recorded at prefrontal and parietal sites during memory and sensory trials of a delayed-response task in 391 adolescent twin pairs. Familial resemblance was identified and there was a strong suggestion of genetic influence. A common genetic factor influencing memory and sensory SW was identified at the prefrontal site (accounting for an estimated 35%-37% of the reliable variance) and at the parietal site (51%-52% of the reliable variance). Remaining reliable variance was influenced by unique environmental factors. Measurement error accounted for 24% to 30% of the total variance of each variable. The results show genetic independence for recording site, but not trial type, and suggest that the genetic factors identified relate more directly to brain structures, as defined by the cognitive functions they support, than to the cognitive networks that link them.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using the quantum tunneling theory, we investigate the spin-dependent transport properties of the ferromagnetic metal/Schottky barrier/semiconductor heterojunction under the influence of an external electric field. It is shown that increasing the electric field, similar to increasing the electron density in semiconductor, will result in a slight enhancement of spin injection in tunneling regime, and this enhancement is significantly weakened when the tunneling Schottky barrier becomes stronger. Temperature effect on spin injection is also discussed. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We derive gap equations for superconductivity in coexistence with ferromagnetism. We treat singlet and triplet states With either equal spin pairing (ESP) or opposite spin pairing (OSP) states, and study the behaviour of these states as a function of exchange splitting. For the s-wave singlet state we find that our gap equations correctly reproduce the Clogston-Chandrasekhar limiting behaviour and the phase diagram of the Baltensperger-Sarma equation (excluding the FFLO region). The singlet superconducting order parameter is shown to be independent of exchange splitting at zero temperature, as is assumed in the derivation of the Clogston-Chandrasekhar limit. P-wave triplet states of the OSP type behave similarly to the singlet state as a function of exchange splitting. On the other hand, ESP triplet states show a very different behaviour. In particular, there is no Clogston-Chandrasekhar limiting and the superconducting critical temperature, T-C, is actually increased by exchange splitting.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

E-cadherin is a major cell-cell adhesion protein of epithelia that is trafficked to the basolateral cell surface in a polarized fashion. The exact post-Golgi route and regulation of E-cadherin transport have not been fully described. The Rho GTPases Cdc42 and Rac1 have been implicated in many cell functions, including the exocytic trafficking of other proteins in polarized epithelial cells. These Rho family proteins are also associated with the cadherin-catenin complexes at the cell surface. We have used functional mutants of Rac1 and Cdc42 and inactivating toxins to demonstrate specific roles for both Cdc42 and Rac1 in the post-Golgi transport of E-cadherin. Dominant-negative mutants of Cdc42 and Rac1 accumulate E-cadherin at a distinct post-Golgi step. This accumulation occurs before p120(ctn) interacts with E-cadherin, because p120(ctn) localization was not affected by the Cdc42 or Rac1 mutants. Moreover, the GTPase mutants had no effect on the trafficking of a targeting mutant of E-cadherin, consistent with the selective involvement of Cdc42 and Rac1 in basolateral trafficking. These results provide a new example of Rho GTPase regulation of basolateral trafficking and demonstrate novel roles for Cdc42 and Rac1 in the post-Golgi transport of E-cadherin.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We use series expansion methods to calculate the dispersion relation of the one-magnon excitations for the spin-(1)/(2) triangular-lattice nearest-neighbor Heisenberg antiferromagnet above a three-sublattice ordered ground state. Several striking features are observed compared to the classical (large-S) spin-wave spectra. Whereas, at low energies the dispersion is only weakly renormalized by quantum fluctuations, significant anomalies are observed at high energies. In particular, we find rotonlike minima at special wave vectors and strong downward renormalization in large parts of the Brillouin zone, leading to very flat or dispersionless modes. We present detailed comparison of our calculated excitation energies in the Brillouin zone with the spin-wave dispersion to order 1/S calculated recently by Starykh, Chubukov, and Abanov [Phys. Rev. B74, 180403(R) (2006)]. We find many common features but also some quantitative and qualitative differences. We show that at temperatures as low as 0.1J the thermally excited rotons make a significant contribution to the entropy. Consequently, unlike for the square lattice model, a nonlinear sigma model description of the finite-temperature properties is only applicable at temperatures < 0.1J. Finally, we review recent NMR measurements on the organic compound kappa-(BEDT-TTF)(2)Cu-2(CN)(3). We argue that these are inconsistent with long-range order and a description of the low-energy excitations in terms of interacting magnons, and that therefore a Heisenberg model with only nearest-neighbor exchange does not offer an adequate description of this material.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Working memory is an essential component of wide-ranging cognitive functions. It is a complex genetic trait probably influenced by numerous genes that individually have only a small influence. These genes may have an amplified influence on phenotypes closer to the gene action. In this study, event-related potential (ERP) phenotypes recorded during a working-memory task were collected from 656 adolescents from 299 families for whom genotypes were available. Univariate linkage analyses using the MERLIN variance-components method were conducted on slow wave phenotypes recorded at multiple sites while participants were required to remember the location of a target. Suggestive linkage (LOD > 2.2) was found on chromosomes 4, 5, 6, 10, 17, and 20. After correcting for multiple testing, suggestive linkage remained on chromosome 10. Empirical thresholds were computed for the most promising phenotypes. Those on chromosome 10 remained suggestive. A number of genes reported to regulate neural differentiation and function (i.e. NRP1, ANK3, and CHAT) were found under these linkage peaks and may influence the levels of neural activity occurring in individuals participating in a spatial working-memory task.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coastal Photograph by Hubert Chanson This photograph of standing wave bed forms was taken at very low tide. The tidal range was 10 m. The bed forms were located on the island of Le Verdelet, in a channel between Le Grande Jaune and Le Verdelet. It is likely that these standing wave bed forms were formed during transcritical shallow water flows at the end of ebb tide. The author’s watch is in the foreground for scale. (Coastal Photograph by Hubert Chanson, Division of Civil Engineering, the University of Queensland, Brisbane, Queensland 4072, Australia.)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper disputes two influential claims in the Romance Linguistics literature. The first is that the synthetic future tenses in spoken Western Romance are now rivalled, if not supplanted, as temporal functors by the more recently developed GO futures. The second is that these synthetic futures now have modal rather than temporal meanings in spoken Romance. These claims are seen as reflecting a universal cycle of diachronic change, in which verb forms originally expressing modal (or aspectual) values take on future temporal reference, becoming tenses. The new modal meanings supplant the temporal, which are then taken up by new forms. Challenges to this theory for French are raised on the basis of empirical evidence of two sorts. Positively, future tenses in spoken Romance continue to be used with temporal meaning. Negatively, evidence of modal meaning for these forms is lacking. The evidence comes froma corpora of spoken French, native speaker judgements and verb data from a daily broadsheet. Cumulatively, it points to the reverse of the claims noted above: the synthetic future in spoken French has temporal but little modal meaning.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Effective surface passivation of lead sulfide (PbS) nanocrystals (NCs) in an aqueous colloidal solution has been achieved following treatment with CdS precursors. The resultant photoluminescent emission displays two distinct components, one originating from the absorption band edge and the other from above the absorption band edge. We show that both of these components are strongly polarized but display distinctly different behaviours. The polarization arising from the band edge shows little dependence on the excitation energy while the polarization of the above-band-edge component is strongly dependent on the excitation energy. In addition, time-resolved polarization spectroscopy reveals that the above-band-edge polarization is restricted to the first couple of nanoseconds, while the band edge polarization is nearly constant over hundreds of nanoseconds. We recognize an incompatibility between the two different polarization behaviours, which enables us to identify two distinct types of surface-passivated PbS NC.