61 resultados para Special Functions
Resumo:
It is now well recognized that cervical cancer is caused by infection with certain human papillomavirus (HPV) subtypes and while interferon-alpha (IFN-alpha) is used to treat HPV-infected lesions, HPV appears to have developed a means to avoid the effects of IFN-alpha. Clinically, resistance appears to be associated with the expression of the E7 oncoprotein. Here we investigated the effects of expression in cells of the E7 protein from high- and low-risk papillomavirus subtypes on a range of responses to IFN-alpha. 2fTGH, a cell line dependent on IFN-alpha for growth in selection medium, grew significantly less well in the presence of E7, and the antiproliferative effects of IFN-alpha upon epithelial cells was lost upon E7 expression. The antiviral effects of IFN-alpha were abrogated in E7-expressing cells. Loss of response to IFN-alpha was found to occur in both high- and low-risk papillomaviruses. Finally, deletion of amino acids 21-24 of HPV type 16 E7 protein partially reversed repression. We conclude that E7 inhibits the functional effects of IFN-alpha and that this property is shared by all HPV subtypes tested. (C) 2000 Academic Press.
Resumo:
The convection-dispersion model and its extended form have been used to describe solute disposition in organs and to predict hepatic availabilities. A range of empirical transit-time density functions has also been used for a similar purpose. The use of the dispersion model with mixed boundary conditions and transit-time density functions has been queried recently by Hisaka and Sugiyanaa in this journal. We suggest that, consistent with soil science and chemical engineering literature, the mixed boundary conditions are appropriate providing concentrations are defined in terms of flux to ensure continuity at the boundaries and mass balance. It is suggested that the use of the inverse Gaussian or other functions as empirical transit-time densities is independent of any boundary condition consideration. The mixed boundary condition solutions of the convection-dispersion model are the easiest to use when linear kinetics applies. In contrast, the closed conditions are easier to apply in a numerical analysis of nonlinear disposition of solutes in organs. We therefore argue that the use of hepatic elimination models should be based on pragmatic considerations, giving emphasis to using the simplest or easiest solution that will give a sufficiently accurate prediction of hepatic pharmacokinetics for a particular application. (C) 2000 Wiley-Liss Inc. and the American Pharmaceutical Association J Pharm Sci 89:1579-1586, 2000.
Resumo:
In a magnetic resonance imaging equipment, gradient and shim coils are needed to produce a spatially varying magnetic field throughout the sample being imaged. Such coils consist of turns of wire wound on the surface of a cylindrical tube. Shim coils in particular, must sometimes be designed to produce complicated magnetic fields to correct for impurities. Streamline patterns for shim coils are much more complicated than those for gradient coils, In this work we present a detailed analysis of streamline methods and their application to shim coil design, A method is presented for determining the winding patterns to generate these complicated fields. (C) 2002 John Wiley & Sons, Inc.
Resumo:
This paper presents a numerical technique for the design of an RF coil for asymmetric magnetic resonance imaging (MRI) systems. The formulation is based on an inverse approach where the cylindrical surface currents are expressed in terms of a combination of sub-domain basis functions: triangular and pulse functions. With the homogeneous transverse magnetic field specified in a spherical region, a functional method is applied to obtain the unknown current coefficients. The current distribution is then transformed to a conductor pattern by use of a stream function technique. Preliminary MR images acquired using a prototype RF coil are presented and validate the design method. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Following the Ninth International Congress of Toxicology (ICT-IX) and its satellite meeting ‘The International Conference on the Environmental Toxicology of Metals and Metalloids’ held in 2001 in Australia, a special issue on Arsenic was published in July 2002 (Toxicology Letters, 133(1), 1–120, 2002). We felt that it was timely to follow up with a special issue covering a wider range of metals and metalloids. Participants from the above conferences were invited to contribute to this special issue on ‘Environmental Toxicology of Metals and Metalloids’. This special issue consists of 11 manuscripts, representing up to date studies on a number of important harmful elements including aluminium, arsenic, cadmium, selenium, tin (tributyltin) and zinc. It illustrates the multidisciplinary nature of modern research in environmental toxicology involving chemical, biological and molecular technological approaches. It has been our great pleasure to produce this special issue. We would like to thank the authors for their contributions. We greatly appreciate the guidance and assistance provided by Dr J.P. Kehrer (Managing Editor), Dr Lulu Stader (Senior Publishing Editor) and their colleagues at Elsevier Science.
Resumo:
The integral of the Wigner function of a quantum-mechanical system over a region or its boundary in the classical phase plane, is called a quasiprobability integral. Unlike a true probability integral, its value may lie outside the interval [0, 1]. It is characterized by a corresponding selfadjoint operator, to be called a region or contour operator as appropriate, which is determined by the characteristic function of that region or contour. The spectral problem is studied for commuting families of region and contour operators associated with concentric discs and circles of given radius a. Their respective eigenvalues are determined as functions of a, in terms of the Gauss-Laguerre polynomials. These polynomials provide a basis of vectors in a Hilbert space carrying the positive discrete series representation of the algebra su(1, 1) approximate to so(2, 1). The explicit relation between the spectra of operators associated with discs and circles with proportional radii, is given in terms of the discrete variable Meixner polynomials.
Resumo:
While multimedia data, image data in particular, is an integral part of most websites and web documents, our quest for information so far is still restricted to text based search. To explore the World Wide Web more effectively, especially its rich repository of truly multimedia information, we are facing a number of challenging problems. Firstly, we face the ambiguous and highly subjective nature of defining image semantics and similarity. Secondly, multimedia data could come from highly diversified sources, as a result of automatic image capturing and generation processes. Finally, multimedia information exists in decentralised sources over the Web, making it difficult to use conventional content-based image retrieval (CBIR) techniques for effective and efficient search. In this special issue, we present a collection of five papers on visual and multimedia information management and retrieval topics, addressing some aspects of these challenges. These papers have been selected from the conference proceedings (Kluwer Academic Publishers, ISBN: 1-4020- 7060-8) of the Sixth IFIP 2.6 Working Conference on Visual Database Systems (VDB6), held in Brisbane, Australia, on 29–31 May 2002.
Resumo:
This special issue represents a further exploration of some issues raised at a symposium entitled “Functional magnetic resonance imaging: From methods to madness” presented during the 15th annual Theoretical and Experimental Neuropsychology (TENNET XV) meeting in Montreal, Canada in June, 2004. The special issue’s theme is methods and learning in functional magnetic resonance imaging (fMRI), and it comprises 6 articles (3 reviews and 3 empirical studies). The first (Amaro and Barker) provides a beginners guide to fMRI and the BOLD effect (perhaps an alternative title might have been “fMRI for dummies”). While fMRI is now commonplace, there are still researchers who have yet to employ it as an experimental method and need some basic questions answered before they venture into new territory. This article should serve them well. A key issue of interest at the symposium was how fMRI could be used to elucidate cerebral mechanisms responsible for new learning. The next 4 articles address this directly, with the first (Little and Thulborn) an overview of data from fMRI studies of category-learning, and the second from the same laboratory (Little, Shin, Siscol, and Thulborn) an empirical investigation of changes in brain activity occurring across different stages of learning. While a role for medial temporal lobe (MTL) structures in episodic memory encoding has been acknowledged for some time, the different experimental tasks and stimuli employed across neuroimaging studies have not surprisingly produced conflicting data in terms of the precise subregion(s) involved. The next paper (Parsons, Haut, Lemieux, Moran, and Leach) addresses this by examining effects of stimulus modality during verbal memory encoding. Typically, BOLD fMRI studies of learning are conducted over short time scales, however, the fourth paper in this series (Olson, Rao, Moore, Wang, Detre, and Aguirre) describes an empirical investigation of learning occurring over a longer than usual period, achieving this by employing a relatively novel technique called perfusion fMRI. This technique shows considerable promise for future studies. The final article in this special issue (de Zubicaray) represents a departure from the more familiar cognitive neuroscience applications of fMRI, instead describing how neuroimaging studies might be conducted to both inform and constrain information processing models of cognition.
Resumo:
Minimal perfect hash functions are used for memory efficient storage and fast retrieval of items from static sets. We present an infinite family of efficient and practical algorithms for generating order preserving minimal perfect hash functions. We show that almost all members of the family construct space and time optimal order preserving minimal perfect hash functions, and we identify the one with minimum constants. Members of the family generate a hash function in two steps. First a special kind of function into an r-graph is computed probabilistically. Then this function is refined deterministically to a minimal perfect hash function. We give strong theoretical evidence that the first step uses linear random time. The second step runs in linear deterministic time. The family not only has theoretical importance, but also offers the fastest known method for generating perfect hash functions.
Resumo:
There is concern that Pacific island economies dependent on remittances of migrants will endure foreign exchange shortages and declining Living standards as remittance levels drop due to lower migration rates and the belief that migrants' willingness to remit decreases over time. The empirical validity of the remittance-decay hypothesis has never been tested. From survey data on Tongan and Western Samoan migrants in Sydney, this paper estimates remittance functions using Tobit regression analysis. It is found that the remittance-decay hypothesis has no empirical validity and migrants are motivated by factors other than altruistic family support, including asset accumulation and investment back home. (C) 1997 Elsevier Science Ltd.
Resumo:
In the past three decades, special education has been subjected to extensive critique and reform of practices. These critiques have been based on notions of social justice and equity. However, the field has suffered from inadequate attention to assumptions about social justice. Social justice is essentially a contested concept. Rather than representing a unitary and universally shared concept, social justice has variable meanings. Differing views of social justice can be seen to underlie apparent contradictions in continuing practice in response to pressures for reform. Reforms predicated on individual rights have been undermined by deep commitments to meritocratic practices in U.S. schools. Reforms based on more communitarian principles, however, ignore the need for structure and the tendency for communal values to marginalize people with disabilities. Special education reform today requires a different basis in a relational definition of the self, structures to support the qualities of relationships, and a belief in the mutability of social justice.