65 resultados para Soil saturation
Resumo:
The response of a two-level atom in a strong polychromatic field composed of a large number of equidistant frequency components is investigated. We calculate numerically, as well as analytically,:the stationary population inversion and show that the saturation of the atomic transition strongly depends on whether or not there is a central (resonant) frequency component in the driving field. We find that, in the presence of the central component, the atom can remain in the ground state even for a strong Rabi frequency of the driving field. In addition, we find that the inversion is sensitive to the relative phase between the frequency components. When the central component is suppressed, the atomic transition saturates with the Rabi frequency independent of the relative phase.
Resumo:
Examples from the Murray-Darling basin in Australia are used to illustrate different methods of disaggregation of reconnaissance-scale maps. One approach for disaggregation revolves around the de-convolution of the soil-landscape paradigm elaborated during a soil survey. The descriptions of soil ma units and block diagrams in a soil survey report detail soil-landscape relationships or soil toposequences that can be used to disaggregate map units into component landscape elements. Toposequences can be visualised on a computer by combining soil maps with digital elevation data. Expert knowledge or statistics can be used to implement the disaggregation. Use of a restructuring element and k-means clustering are illustrated. Another approach to disaggregation uses training areas to develop rules to extrapolate detailed mapping into other, larger areas where detailed mapping is unavailable. A two-level decision tree example is presented. At one level, the decision tree method is used to capture mapping rules from the training area; at another level, it is used to define the domain over which those rules can be extrapolated. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
The principle of using induction rules based on spatial environmental data to model a soil map has previously been demonstrated Whilst the general pattern of classes of large spatial extent and those with close association with geology were delineated small classes and the detailed spatial pattern of the map were less well rendered Here we examine several strategies to improve the quality of the soil map models generated by rule induction Terrain attributes that are better suited to landscape description at a resolution of 250 m are introduced as predictors of soil type A map sampling strategy is developed Classification error is reduced by using boosting rather than cross validation to improve the model Further the benefit of incorporating the local spatial context for each environmental variable into the rule induction is examined The best model was achieved by sampling in proportion to the spatial extent of the mapped classes boosting the decision trees and using spatial contextual information extracted from the environmental variables.
Resumo:
We re-mapped the soils of the Murray-Darling Basin (MDB) in 1995-1998 with a minimum of new fieldwork, making the most out of existing data. We collated existing digital soil maps and used inductive spatial modelling to predict soil types from those maps combined with environmental predictor variables. Lithology, Landsat Multi Spectral Scanner (Landsat MSS), the 9-s digital elevation model (DEM) of Australia and derived terrain attributes, all gridded to 250-m pixels, were the predictor variables. Because the basin-wide datasets were very large data mining software was used for modelling. Rule induction by data mining was also used to define the spatial domain of extrapolation for the extension of soil-landscape models from existing soil maps. Procedures to estimate the uncertainty associated with the predictions and quality of information for the new soil-landforms map of the MDB are described. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
[1] We attempt to generate new solutions for the moisture content form of the one-dimensional Richards' [1931] equation using the Lisle [1992] equivalence mapping. This mapping is used as no more general set of transformations exists for mapping the one-dimensional Richards' equation into itself. Starting from a given solution, the mapping has the potential to generate an infinite number of new solutions for a series of nonlinear diffusivity and hydraulic conductivity functions. We first seek new analytical solutions satisfying Richards' equation subject to a constant flux surface boundary condition for a semi-infinite dry soil, starting with the Burgers model. The first iteration produces an existing solution, while subsequent iterations are shown to endlessly reproduce this same solution. Next, we briefly consider the problem of redistribution in a finite-length soil. In this case, Lisle's equivalence mapping is generalized to account for arbitrary initial conditions. As was the case for infiltration, however, it is found that new analytical solutions are not generated using the equivalence mapping, although existing solutions are recovered.
Resumo:
Direct and simultaneous observation of root growth and plant water uptake is difficult because soils are opaque. X-ray imaging techniques such as projection radiography or Computer Tomography (CT) offer a partial alternative to such limitations. Nevertheless, there is a trade-off between resolution, large field-of-view and 3-dimensionality: With the current state of the technology, it is possible to have any two. In this study, we used X-ray transmission through thin-slab systems to monitor transient saturation fields that develop around roots as plants grow. Although restricted to 2-dimensions, this approach offers a large field-of-view together with high spatial and dynamic resolutions. To illustrate the potential of this technology, we grew peas in 1 cm thick containers filled with soil and imaged them at regular intervals. The dynamics of both the root growth and the water content field that developed around the roots could be conveniently monitored. Compared to other techniques such as X-ray CT, our system is relatively inexpensive and easy to implement. It can potentially be applied to study many agronomic problems, such as issues related to the impact of soil constraints (physical, chemical or biological) on root development.
Resumo:
The increased use of trickle or drip irrigation is seen as one way of helping to improve the sustainability of irrigation systems around the world. However, soil water and solute transport properties and soil profile characteristics are often not adequately incorporated in the design and management of trickle systems. In this paper, we describe results of a simulation study designed to highlight the impacts of soil properties on water and solute transport from buried trickle emitters. The analysis addresses the influence of soil hydraulic properties, soil layering, trickle discharge rate, irrigation frequency, and timing of nutrient application on wetting patterns and solute distribution. We show that (1) trickle irrigation can improve plant water availability in medium and low permeability fine-textured soils, providing that design and management are adapted to account for their soil hydraulic properties, (2) in highly permeable coarse-textured soils, water and nutrients move quickly downwards from the emitter, making it difficult to wet the near surface zone if emitters are buried too deep, and (3) changing the fertigation strategy for highly permeable coarse-textured soils to apply nutrients at the beginning of an irrigation cycle can maintain larger amounts of nutrient near to and above the emitter, thereby making them less susceptible to leaching losses. The results demonstrate the need to account for differences in soil hydraulic properties and solute transport when designing irrigation and fertigation management strategies. Failure to do this will result in inefficient systems and lost opportunities for reducing the negative environmental impacts of irrigation.
Resumo:
The assumption in analytical solutions for flow from surface and buried point sources of an average water content, (θ) over bar, behind the wetting front is examined. Some recent work has shown that this assumption fitted some field data well. Here we calculated (θ) over bar using a steady state solution based on the work by Raats [1971] and an exponential dependence of the diffusivity upon the water content. This is compared with a constant value of (θ) over bar calculated from an assumption of a hydraulic conductivity at the wetting front of 1 mm day(-1) and the water content at saturation. This comparison was made for a wide range of soils. The constant (θ) over bar generally underestimated (θ) over bar at small wetted radii and overestimated (θ) over bar at large radii. The crossover point between under and overestimation changed with both soil properties and flow rate. The largest variance occurred for coarser texture soils at low-flow rates. At high-flow rates in finer-textured soils the use of a constant (θ) over bar results in underestimation of the time for the wetting front to reach a particular radius. The value of (θ) over bar is related to the time at which the wetting front reaches a given radius. In coarse-textured soils the use of a constant value of (θ) over bar can result in an error of the time when the wetting front reaches a particular radius, as large as 80% at low-flow rates and large radii.
Resumo:
This paper describes the construction of Australia-wide soil property predictions from a compiled national soils point database. Those properties considered include pH, organic carbon, total phosphorus, total nitrogen, thickness. texture, and clay content. Many of these soil properties are used directly in environmental process modelling including global climate change models. Models are constructed at the 250-m resolution using decision trees. These relate the soil property to the environment through a suite of environmental predictors at the locations where measurements are observed. These models are then used to extend predictions to the continental extent by applying the rules derived to the exhaustively available environmental predictors. The methodology and performance is described in detail for pH and summarized for other properties. Environmental variables are found to be important predictors, even at the 250-m resolution at which they are available here as they can describe the broad changes in soil property.
Resumo:
The environmental fate of polycyclic aromatic hydrocarbons (PAHs) in soils is motivated by their wide distribution, high persistence, and potentially deleterious effect on human health. Polycyclic aromatic hydrocarbons constitute the largest group of environmental contaminants released in the environment. Therefore, the potential biodegradation of these compounds is of vital importance. A biocarrier suitable for the colonization by micro-organisms for the purpose of purifying soil contaminated by polycyclic aromatic hydrocarbons was developed. The optimized composition of the biocarrier was polyvinyl alcohol (PVA) 10%, sodium alginate (SA) 0.5%, and powdered activated carbon (PAC) 5%. There was no observable cytotoxicity of biocarriers on immobilized cells and a viable cell population of 1.86 x 10(10) g(-1) was maintained for immobilized bacterium. Biocarriers made from chemical methods had a higher biodegradation but lower mechanical strengths. Immobilized bacterium Zoogloea sp. had an ideal capability of biodegradation for phenanthrene and pyrene over a relative wide concentration range. The study results showed that the biodegradation of phenanthrene and pyrene reached 87.0 and 75.4%, respectively, by using the optimal immobilized method of Zoogloea sp. cultivated in a sterilized soil. Immobilized Zoogloea sp. was found to be effective for biodegrading the soil contaminated with phenanthrene and pyrene. Even in natural (unsterilized) soil, the biodegradation of phenanthrene and pyrene using immobilized Zoogloea sp. reached 85.0 and 67.1%, respectively, after 168 h of cultivation, more than twice that achieved if the cells were not immobilized on the biocarrier. Therefore, the immobilization technology enhanced the competitive ability of introduced micro-organisms and represents an effective method for the biotreatment of soil contaminated with phenanthrene and pyrene.
Resumo:
The magnesium (Mg) status of 52 highly weathered, predominantly acidic, surface soils from tropical and subtropical north-eastern Australia was evaluated in a laboratory study. Soils were selected to represent a range of soil types and management histories. Exchangeable Mg concentrations were generally low (median value 0.37 cmol(+)/kg), with deficient levels (<0.3 cmol(+)/kg) being measured in 22 of the soils, highlighting the potential for Mg deficiency as a limitation to plant growth in the region. Furthermore, acid-extractable Mg concentrations, considered a reserve of potentially available Mg, were generally modest (mean and median values, 1.6 and 0.40 cmol(+)/kg, respectively). The total Mg content of the soils studied ranged from 123 to 7894 mg/kg, the majority present in the mineral pool (mean 71%), with smaller proportions in the acid-soluble (mean 11%) and exchangeable (mean 17%) pools, and a negligible amount associated with organic matter (mean 1%). A range of extractant solutions used to displace exchangeable Mg was compared, and found to yield similar results on soils with exchangeable Mg <4 cmol(+)/kg. However, at higher exchangeable Mg concentrations, dilute extractants (0.01 M CaCl2, 0.0125 M BaCl2) displaced less Mg than concentrated extractants (1 M NH4Cl, 1 M NH4OAc, 1 M KCl). The concentrated extractants displaced similar amounts of Mg, thus the choice of extractant is not critical, provided the displacing cation is sufficiently concentrated. Exchangeable Mg was not significantly correlated to organic carbon (P > 0.05), and only 45% of the variation in exchangeable Mg could be explained by a combination of pH(w) and clay content.
Resumo:
A glasshouse trial, in which maize (Zea mays L. cv. Pioneer 3270) was grown in 35 north-eastern Australian soils of low magnesium (Mg) status, was undertaken to study the response to applied Mg. Of the soils studied, 20 were strongly acidic (pH(1:5 soil:water) <5.4), and in these soils the response to Mg was studied in both the presence and absence of lime. Magnesium application significantly (P < 0.05) increased dry matter yield in 10 soils, all of which were strongly acidic. However, significant Mg responses were recorded in 6 soils in the presence of lime, indicating that, in many situations, liming strategies may need to include consideration of Mg nutrition. Critical soil test values for 90% relative yield were 0.21 cmol(+)/kg of exchangeable Mg or 7% Mg saturation, whilst the critical (90% yield) plant tissue Mg concentration (whole shoots) was 0.15%.
Resumo:
A new conceptual model for soil pore-solid structure is formalized. Soil pore-solid structure is proposed to comprise spatially abutting elements each with a value which is its membership to the fuzzy set ''pore,'' termed porosity. These values have a range between zero (all solid) and unity (all pore). Images are used to represent structures in which the elements are pixels and the value of each is a porosity. Two-dimensional random fields are generated by allocating each pixel a porosity by independently sampling a statistical distribution. These random fields are reorganized into other pore-solid structural types by selecting parent points which have a specified local region of influence. Pixels of larger or smaller porosity are aggregated about the parent points and within the region of interest by controlled swapping of pixels in the image. This creates local regions of homogeneity within the random field. This is similar to the process known as simulated annealing. The resulting structures are characterized using one-and two-dimensional variograms and functions describing their connectivity. A variety of examples of structures created by the model is presented and compared. Extension to three dimensions presents no theoretical difficulties and is currently under development.