23 resultados para Social-space dynamics


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Classical dynamics is formulated as a Hamiltonian flow in phase space, while quantum mechanics is formulated as unitary dynamics in Hilbert space. These different formulations have made it difficult to directly compare quantum and classical nonlinear dynamics. Previous solutions have focused on computing quantities associated with a statistical ensemble such as variance or entropy. However a more diner comparison would compare classical predictions to the quantum predictions for continuous simultaneous measurement of position and momentum of a single system, in this paper we give a theory of such measurement and show that chaotic behavior in classical systems fan be reproduced by continuously measured quantum systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this article, I show how new spaces are being prefigured for colonization in new economy policy discourses. Drawing on a corpus of 1.3 million words collected from legislatures throughout the world, I show the role of policy language in creating the foundations of an emergent form of political economy: The analysis is informed by principles from critical discourse analysis (CDA), classical political economy and critical media studies. It foregrounds a functional aspect of language called process metaphor to show how aspects of human activity are prefigured for mass commodification by the manipulation of realis and irrealis spaces. I also show how the fundamental element of any new political economy, the property element, is being largely ignored. Current moves to create a privately owned global space, which is as concrete as landed property - namely, the electromagnetic spectrum - has significant ramifications for the future of social relations in any global knowledge economy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For species that form multi-generational and territorial family groups, resource-rich areas are predicted to support family dynasties in which one genetic lineage continuously occupies an area and may even expand to occupy surrounding areas. Data from a long-term study of Tasmanian native hens (Gallinula mortierii) support this prediction. The reproductive success and dispersal patterns of 18 hen lineages were monitored for seven breeding seasons and over several generations. The founder group with the highest average territory quality produced the highest total number of fledged young and the highest number of fledged linear descendants, accounting for 24% of the combined reproductive output of these 18 lineages. In the space of 6 years, this single genetic lineage expanded from one territory to occupy 12 of the 47 territories present in the population. This rate of expansion was over four times the population average for the same period. A multivariate analysis revealed that the success of a genetic lineage depended only on the number of high-quality territories surrounding the founder group. These results further demonstrate the resource-dependent nature of reproductive success in this species, and also highlight the potential importance of family dynasties in other cooperative species with complex social dynamics and dispersal patterns.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using examples from contempoary policy and business discourses, and exemplary historical texts dealing with the notion of value, I put forward an argument as to why a critical scholarship that draws on media history, language analysis, philosophy and political economy is necessary to understand the dynamics of what is being called 'the global knowledge economy'. I argue that the social changes associated with new modes of value determination are closely associated with new media form.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate the difference between classical and quantum dynamics of coupled magnetic dipoles. We prove that in general the dynamics of the classical interaction Hamiltonian differs from the corresponding quantum model, regardless of the initial state. The difference appears as nonpositive-definite diffusion terms in the quantum evolution equation of an appropriate positive phase-space probability density. Thus, it is not possible to express the dynamics in terms of a convolution of a positive transition probability function and the initial condition as can be done in the classical case. It is this feature that enables the quantum system to evolve to an entangled state. We conclude that the dynamics are a quantum element of nuclear magnetic resonance quantum-information processing. There are two limits where our quantum evolution coincides with the classical one: the short-time limit before spin-spin interaction sets in and the long-time limit when phase diffusion is incorporated.