100 resultados para Size of berries
Resumo:
Pulsed field gel electrophoresis of intact chromosomes of Babesia bovis revealed four chromosomes in the haploid genome. A telomere probe, derived from Plasmodium berghei, hybridised to eight SfiI restriction fragments of genomic B. bovis DNA digests indicating the presence of four chromosomes. A small subunit (18S) ribosomal RNA gene probe hybridised to the third chromosome only. The genome size of B. bovis is estimated to be 9.4 million base pairs. The sizes of chromosomes 1, 2, 3 and 4 are estimated to be 1.4, 2.0, 2.8 and 3.2 million base pairs, respectively. (C) 1997 Australian Society for Parasitology. Published by Elsevier Science Ltd.
Resumo:
The positive relationship between offspring size and offspring fitness is a fundamental assumption of life-history theory, but it has received relatively little attention in the marine environment. This is surprising given that substantial intraspecific variation in offspring size is common in marine organisms and there are clear links between larval experience and adult performance. The metamorphosis of most marine invertebrates does not represent a newbeginning, and larval experiences can have effects that carry over to juvenile survival and growth. We show that larval size can have equally important carryover effects in a colonial marine invertebrate. In the bryozoan Bugula neritina, the size of the non-feeding larvae has a prolonged effect on colony performance after metamorphosis. Colonies that came from larger larvae survived better, grew faster, and reproduced sooner or produced more embryos than colonies that came from smaller larvae. These effects crossed generations, with colonies from larger larvae themselves producing larger larvae. These effects were found in two populations (in Australia and in the United States) in contrasting habitats.
Resumo:
Variation in larval size has been shown to be an important factor for the post-metamorphic performance of marine invertebrates but, despite its importance, few sources of this variation have been identified. For a range of taxa, offspring size is positively correlated with maternal size but the reasons for this correlation remain unclear. We halved the size of colonies in the bryozoan Bugula neritina 1 wk prior to reproduction (but during embryogenesis) to determine if larval size is a fixed or plastic trait. We manipulated colonies in such a way that the ratio of feeding zooids to reproductive zooids was constant between treatment and control colonies. We found that manipulating colony size strongly affects larval size; halved colonies produced larvae that were similar to13% smaller than those produced by intact colonies. We entered these data into a simple model based on previous work to estimate the likely post-metamorphic consequences of this reduction in larval size. The model predicted that larvae that came from manipulated colonies would suffer similar to300% higher post-metamorphic mortality and similar to50% lower fecundity as adults. Colonies that are faced with a stress appear to be trading off current offspring fitness to maximize their own long-term fitness and this may explain previous observations of compensatory growth in colonial organisms. This study demonstrates that larval size is a surprisingly dynamic trait and strong links exist between the maternal phenotype and the fitness of the offspring. The performance of settling larvae may be determined not only by their larval experience but also by the experience of their mothers.
Resumo:
This article examines the effects of commercialisation of agriculture on land use and work patterns by means of a case study in the Nyeri district in Kenya. The study uses cross sectional data collected from small-scale farmers in this district. We find that good quality land is allocated to non-food cash crops, which may lead to a reduction in non-cash food crops and expose some households to greater risks of possible famine. Also the proportion of land allocated to food crops declines as the farm size increases while the proportion of land allocated to non-food cash crops rises as the size of farm increases. Cash crops are also not bringing in as much revenue commensurate with the amount of land allocated to them. With growing commercialisation, women still work more hours than men. They not only work on non-cash food crops but also on cash crops including non-food cash crops. Evidence indicates that women living with husbands work longer hours than those married but living alone, and also longer than the unmarried women. Married women seem to lose their decision-making ability with growth of commercialisation, as husbands make most decisions to do with cash crops. Furthermore husbands appropriate family cash income. Husbands are less likely to use such income for the welfare of the family compared to wives due to different expenditure patterns. Married women in Kenya also have little or no power to change the way land is allocated between food and non-food cash crops. Due to deteriorating terms of trade for non-food cash crops, men have started cultivation of food cash crops with the potential of crowding out women. It is found that both the area of non-cash crops tends to rise with farm size but also the proportion of the farm area cash cropped rises in Central Kenya.
Resumo:
Kenyan women have more children, especially in rural areas, than in most developing nations. This is widely believed to be an impediment to Kenya’s economic development. Thus, factors influencing family size in the Kenyan context are important for its future. A brief review of economic theories of fertility leads to the conclusion that both economics and social/cultural factors must be considered simultaneously when examining factors that determine the number of children in a family. The need to do this is borne out in Kenya’s situation by utilising responses from a random sample of rural households in the Nyeri district of Kenya. Economic and social/cultural factors intertwine to influence family sizes in this district. After providing a summary of the main statistical results from the survey, we use multiple regression analysis to explore the influences of a woman’s age, level of education, whether she has outside employment, whether the family keeps livestock, whether she expresses a preference for more boys than girls, whether the family uses only family labour (including child labour) and the size of the farm, which is used as a proxy for family income. It was found that preference for male children has an important positive influence on family size in this district. Women were found to have greater preference for male children than their male counterparts possibly because of their fear of being disinherited if they do not produce an heir for their husbands. Preference for sons was also found in allocation of human capital resources at the household level in that the female respondents were found to have lower levels of education than their male counterparts. Various long-term policies are outlined that may help to reduce the number of offspring of women in Kenya.
Resumo:
This article examines the effects of marital status, farm size and other factors on the extent of cash cropping (and allocation of land use) by means of a case study in the Nyeri district in Kenya. It was found that married women are involved in the production of a relatively greater amount of output of cash crops than unmarried women since husbands prefer to have more land under cash crops than food crops. Farmers with better quality land allocate a high proportion of it to non-food cash crops, which may expose some households to greater risks of possible famine. The proportion of land allocated to food crops declines as the farm size increases while the proportion of land allocated to non-food cash crops rises as the size of farm increases. Age is also inversely associated with subsistence. Education, though inversely associated with subsistence farming does not appear to be statistically very significant as an influence on the composition of land use and composition of farm output. With growing commercialisation, married women work more hours than unmarried ones, working not only on non-cash food crops but also on non-food cash crops. Married women seem to lose their decision-making ability with growth of agricultural commercialisation, as husbands make most decisions to do with cash crops. Married women in Kenya also have little or no power to change the way land is allocated between food and non-food cash crops.
Resumo:
Actual and potential fecundity for Childers canegrub, Antitrogus parvulus Britton, was influenced by the size of females, with the largest females laying the most eggs. Actual or realised fecundity for A. parvulus averaged 18 eggs per female, about half of potential fecundity. Actual fecundity was significantly related to elytron length in a group of laboratory-reared beetles, but not for a group of field-collected beetles. Size was related to potential fecundity for four out of four groups of females collected from emergence traps in the field and for one of two groups reared in the laboratory from field-collected late-instar larvae. As females lay a single batch of eggs, beetle size may be important in the population dynamics of A. parvulus. Populations of A. parvulus with small beetles are potentially less likely to persist and expand than populations with relatively large females.
Resumo:
The duration of movements made to intercept moving targets decreases and movement speed increases when interception requires greater temporal precision. Changes in target size and target speed can have the same effect on required temporal precision, but the response to these changes differs: changes in target speed elicit larger changes in response speed. A possible explanation is that people attempt to strike the target in a central zone that does not vary much with variation in physical target size: the effective size of the target is relatively constant over changes in physical size. Three experiments are reported that test this idea. Participants performed two tasks: (1) strike a moving target with a bat moved perpendicular to the path of the target; (2) press on a force transducer when the target was in a location where it could be struck by the bat. Target speed was varied and target size held constant in experiment 1. Target speed and size were co-varied in experiment 2, keeping the required temporal precision constant. Target size was varied and target speed held constant in experiment 3 to give the same temporal precision as experiment 1. Duration of hitting movements decreased and maximum movement speed increased with increases in target speed and/or temporal precision requirements in all experiments. The effects were largest in experiment 1 and smallest in experiment 3. Analysis of a measure of effective target size (standard deviation of strike locations on the target) failed to support the hypothesis that performance differences could be explained in terms of effective size rather than actual physical size. In the pressing task, participants produced greater peak forces and shorter force pulses when the temporal precision required was greater, showing that the response to increasing temporal precision generalizes to different responses. It is concluded that target size and target speed have independent effects on performance.
Resumo:
A new approach based on the nonlocal density functional theory to determine pore size distribution (PSD) of activated carbons and energetic heterogeneity of the pore wall is proposed. The energetic heterogeneity is modeled with an energy distribution function (EDF), describing the distribution of solid-fluid potential well depth (this distribution is a Dirac delta function for an energetic homogeneous surface). The approach allows simultaneous determining of the PSD (assuming slit shape) and EDF from nitrogen or argon isotherms at their respective boiling points by using a set of local isotherms calculated for a range of pore widths and solid-fluid potential well depths. It is found that the structure of the pore wall surface significantly differs from that of graphitized carbon black. This could be attributed to defects in the crystalline structure of the surface, active oxide centers, finite size of the pore walls (in either wall thickness or pore length), and so forth. Those factors depend on the precursor and the process of carbonization and activation and hence provide a fingerprint for each adsorbent. The approach allows very accurate correlation of the experimental adsorption isotherm and leads to PSDs that are simpler and more realistic than those obtained with the original nonlocal density functional theory.
Resumo:
Modelling and optimization of the power draw of large SAG/AG mills is important due to the large power draw which modern mills require (5-10 MW). The cost of grinding is the single biggest cost within the entire process of mineral extraction. Traditionally, modelling of the mill power draw has been done using empirical models. Although these models are reliable, they cannot model mills and operating conditions which are not within the model database boundaries. Also, due to its static nature, the impact of the changing conditions within the mill on the power draw cannot be determined using such models. Despite advances in computing power, discrete element method (DEM) modelling of large mills with many thousands of particles could be a time consuming task. The speed of computation is determined principally by two parameters: number of particles involved and material properties. The computational time step is determined by the size of the smallest particle present in the model and material properties (stiffness). In the case of small particles, the computational time step will be short, whilst in the case of large particles; the computation time step will be larger. Hence, from the point of view of time required for modelling (which usually corresponds to time required for 3-4 mill revolutions), it will be advantageous that the smallest particles in the model are not unnecessarily too small. The objective of this work is to compare the net power draw of the mill whose charge is characterised by different size distributions, while preserving the constant mass of the charge and mill speed. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
This Study describes the community of all metazoan parasites from 14 individuals of thicklip wrasse, Hemigymnus melapterus, from Lizard Island, Australia. All fish were parasitized, and 4,649 parasite individuals were found. Twenty-six parasite species were identified although only 6 species were abundant and prevalent: gnathiid isopods, the copepod Hatschekia hemigymni, the digenean Callohelmis pichelinae, and 3 morphotypes of tetraphyllidean cestode larvae. We analyzed whether the body size and microhabitat of the parasites and size of the host affected understanding of the structure of the parasite community. We related the abundance, biovolume, and density of parasites with the host body size and analyzed the abundances and volumetric densities of some parasite species within microhabitats. Although the 2 most abundant species comprised 75% of all parasite individuals, 4 species, each in similar proportion, comprised 85% of the total biovolume. Although larger host individuals had higher richness, abundance, and biovolume of parasites than smaller individuals, overall parasite volumetric density actually decreased with the host body size. Moreover. parasites exhibited abundances and densities significantly different among microhabitats; some parasite species depended on the area available, whereas others selected a specific microhabitat. Parasite and habitat size exhibited interesting relationships that should be considered more frequently. Considerations of these parameters improve understanding of parasite community structure and how the parasites use their habitats.
Resumo:
A series of TPU nanocomposites were prepared by incorporating organically modified layered silicates with controlled particle size. To our knowledge, this is the first study into the effects of layered silicate diameter in polymer nanocomposites utilizing the same mineral for each size fraction. The tensile properties of these materials were found to be highly dependent upon the size of the layered silicates. A decrease in disk diameter was associated with a sharp upturn in the stress-strain curve and a pronounced increase in tensile strength. Results from SAXS/SANS experiments showed that the layered silicates did not affect the bulk TPU microphase structure and the morphological response of the host TPU to deformation or promote/hinder strain-induced soft segment crystallization. The improved tensile properties of the nanocomposites containing the smaller nanofillers resulted from the layered silicates aligning in the direction of strain and interacting with the TPU sequences via secondary bonding. This phenomenon contributes predominantly above 400% strain once the microdomain architecture has largely been disassembled. Large tactoids that are unable to align in the strain direction lead to concentrated tensile stresses between the polymer and filler, instead of desirable shear stresses, resulting in void formation and reduced tensile properties. In severe cases, such as that observed for the composite containing the largest silicate, these voids manifest visually as stress whitening.
Resumo:
The results of two experiments are reported that examined how performance in a simple interceptive action (hitting a moving target) was influenced by the speed of the target, the size of the intercepting effector and the distance moved to make the interception. In Experiment 1, target speed and the width of the intercepting manipulandum (bat) were varied. The hypothesis that people make briefer movements, when the temporal accuracy and precision demands of the task are high, predicts that bat width and target speed will divisively interact in their effect on movement time (MT) and that shorter MTs will be associated with a smaller temporal variable error (VE). An alternative hypothesis that people initiate movement when the rate of expansion (ROE) of the target's image reaches a specific, fixed criterion value predicts that bat width will have no effect on MT. The results supported the first hypothesis: a statistically reliable interaction of the predicted form was obtained and the temporal VE was smaller for briefer movements. In Experiment 2, distance to move and target speed were varied. MT increased in direct proportion to distance and there was a divisive interaction between distance and speed; as in Experiment 1, temporal VE was smaller for briefer movements. The pattern of results could not be explained by the strategy of initiating movement at a fixed value of the ROE or at a fixed value of any other perceptual variable potentially available for initiating movement. It is argued that the results support pre-programming of MT with movement initiated when the target's time to arrival at the interception location reaches a criterion value that is matched to the pre-programmed MT. The data supported completely open-loop control when MT was less than between 200 and 240 ms with corrective sub-movements increasingly frequent for movements of longer duration.
Resumo:
The adsorption of Lennard-Jones fluids (argon and nitrogen) onto a graphitized thermal carbon black surface was studied with a Grand Canonical Monte Carlo Simulation (GCMC). The surface was assumed to be finite in length and composed of three graphene layers. When the GCMC simulation was used to describe adsorption on a graphite surface, an over-prediction of the isotherm was consistently observed in the pressure regions where the first and second layers are formed. To remove this over-prediction, surface mediation was accounted for to reduce the fluid-fluid interaction. Do and co-workers have introduced the so-called surface-mediation damping factor to correct the over-prediction for the case of a graphite surface of infinite extent, and this approach has yielded a good description of the adsorption isotherm. In this paper, the effects of the finite size of the graphene layer on the adsorption isotherm and how these would affect the extent of the surface mediation were studied. It was found that this finite-surface model provides a better description of the experimental data for graphitized thermal carbon black of high surface area (i.e. small crystallite size) while the infinite- surface model describes data for carbon black of very low surface area (i.e. large crystallite size).