32 resultados para Semantic metrics
Resumo:
The basis of this work was to investigate the relative environmental impacts of various power generators knowing that all plants are located in totally different environments and that different receptors will experience different impacts. Based on IChemE sustainability metrics paradigm, we calculated potential environmental indicators (P-EI) that represent the environmental burden of masses of potential pollutants discharged into different receiving media. However, a P-EI may not be of significance, as it may not be expressed at all in different conditions, so to try and include some receiver significance we developed a methodology to take into account some specific environmental indicators (S-EI) that refer to the environmental attributes of a specific site. In this context, we acquired site specific environmental data related to the airsheds and water catchment areas in different locations for a limited number of environmental indicators such as human health (carcinogenic) effects, atmospheric acidification, photochemical (ozone) smog and eutrophication. The S-EI results from this particular analysis show that atmospheric acidification has highest impact value while health risks due to fly ash emissions are considered not to be as significant. This is due to the fact that many coal power plants in Australia are located in low population density air sheds. The contribution of coal power plants to photochemical (ozone) smog and eutrophication were not significant. In this study, we have considered emission related data trends to reflect technology performance (e.g., P-EI indicators) while a real sustainability metric can be associated only with the specific environmental conditions of the relevant sites (e.g., S-EI indicators).
Resumo:
Research has suggested that semantic processing deficits in Parkinson's disease (PD) are related to striatal dopamine deficiency. As an investigation of the influence of dopamine on semantic activation in PD, 7 participants with PD performed a lexical-decision task when on and off levodopa medication. Seven healthy controls matched to the participants with PD in terms of sex, age, and education also participated in the study. By use of a multipriming paradigm, whereby 2 prime words were presented prior to the target word, semantic priming effects were measured across stimulus onset asynchronies (SOAs) of 250 Ins and 1,200 Ins. The results revealed a similar pattern of priming across SOAs for the control group and the PD participants on medication. In contrast, within-group comparisons revealed that automatic semantic activation was compromised in PD participants when off medication. The implications of these results for the neuromodulatory influence of dopamine on semantic processing in PD are discussed.
Resumo:
Classic identity negative priming (NP) refers to the finding that when an object is ignored, subsequent naming responses to it are slower than when it has not been previously ignored (Tipper, S.P., 1985. The negative priming effect: inhibitory priming by ignored objects. Q. J. Exp. Psychol. 37A, 571-590). It is unclear whether this phenomenon arises due to the involvement of abstract semantic representations that the ignored object accesses automatically. Contemporary connectionist models propose a key role for the anterior temporal cortex in the representation of abstract semantic knowledge (e.g., McClelland, J.L., Rogers, T.T., 2003. The parallel distributed processing approach to semantic cognition. Nat. Rev. Neurosci. 4, 310-322), suggesting that this region should be involved during performance of the classic identity NP task if it involves semantic access. Using high-field (4 T) event-related functional magnetic resonance imaging, we observed increased BOLD responses in the left anterolateral temporal cortex including the temporal pole that was directly related to the magnitude of each individual's NP effect, supporting a semantic locus. Additional signal increases were observed in the supplementary eye fields (SEF) and left inferior parietal lobule (IPL). (c) 2006 Elsevier Inc. All rights reserved.
Resumo:
In this paper, we compare a well-known semantic spacemodel, Latent Semantic Analysis (LSA) with another model, Hyperspace Analogue to Language (HAL) which is widely used in different area, especially in automatic query refinement. We conduct this comparative analysis to prove our hypothesis that with respect to ability of extracting the lexical information from a corpus of text, LSA is quite similar to HAL. We regard HAL and LSA as black boxes. Through a Pearsonrsquos correlation analysis to the outputs of these two black boxes, we conclude that LSA highly co-relates with HAL and thus there is a justification that LSA and HAL can potentially play a similar role in the area of facilitating automatic query refinement. This paper evaluates LSA in a new application area and contributes an effective way to compare different semantic space models.
Resumo:
Spatial data are particularly useful in mobile environments. However, due to the low bandwidth of most wireless networks, developing large spatial database applications becomes a challenging process. In this paper, we provide the first attempt to combine two important techniques, multiresolution spatial data structure and semantic caching, towards efficient spatial query processing in mobile environments. Based on the study of the characteristics of multiresolution spatial data (MSD) and multiresolution spatial query, we propose a new semantic caching model called Multiresolution Semantic Caching (MSC) for caching MSD in mobile environments. MSC enriches the traditional three-category query processing in semantic cache to five categories, thus improving the performance in three ways: 1) a reduction in the amount and complexity of the remainder queries; 2) the redundant transmission of spatial data already residing in a cache is avoided; 3) a provision for satisfactory answers before 100% query results have been transmitted to the client side. Our extensive experiments on a very large and complex real spatial database show that MSC outperforms the traditional semantic caching models significantly
Resumo:
Client-side caching of spatial data is an important yet very much under investigated issue. Effective caching of vector spatial data has the potential to greatly improve the performance of spatial applications in the Web and wireless environments. In this paper, we study the problem of semantic spatial caching, focusing on effective organization of spatial data and spatial query trimming to take advantage of cached data. Semantic caching for spatial data is a much more complex problem than semantic caching for aspatial data. Several novel ideas are proposed in this paper for spatial applications. A number of typical spatial application scenarios are used to generate spatial query sequences. An extensive experimental performance study is conducted based on these scenarios using real spatial data. We demonstrate a significant performance improvement using our ideas.
Resumo:
Web transaction data between Web visitors and Web functionalities usually convey user task-oriented behavior pattern. Mining such type of click-stream data will lead to capture usage pattern information. Nowadays Web usage mining technique has become one of most widely used methods for Web recommendation, which customizes Web content to user-preferred style. Traditional techniques of Web usage mining, such as Web user session or Web page clustering, association rule and frequent navigational path mining can only discover usage pattern explicitly. They, however, cannot reveal the underlying navigational activities and identify the latent relationships that are associated with the patterns among Web users as well as Web pages. In this work, we propose a Web recommendation framework incorporating Web usage mining technique based on Probabilistic Latent Semantic Analysis (PLSA) model. The main advantages of this method are, not only to discover usage-based access pattern, but also to reveal the underlying latent factor as well. With the discovered user access pattern, we then present user more interested content via collaborative recommendation. To validate the effectiveness of proposed approach, we conduct experiments on real world datasets and make comparisons with some existing traditional techniques. The preliminary experimental results demonstrate the usability of the proposed approach.
Resumo:
Semantic priming occurs when a subject is faster in recognising a target word when it is preceded by a related word compared to an unrelated word. The effect is attributed to automatic or controlled processing mechanisms elicited by short or long interstimulus intervals (ISIs) between primes and targets. We employed event-related functional magnetic resonance imaging (fMRI) to investigate blood oxygen level dependent (BOLD) responses associated with automatic semantic priming using an experimental design identical to that used in standard behavioural priming tasks. Prime-target semantic strength was manipulated by using lexical ambiguity primes (e.g., bank) and target words related to dominant or subordinate meaning of the ambiguity. Subjects made speeded lexical decisions (word/nonword) on dominant related, subordinate related, and unrelated word pairs presented randomly with a short ISI. The major finding was a pattern of reduced activity in middle temporal and inferior prefrontal regions for dominant versus unrelated and subordinate versus unrelated comparisons, respectively. These findings are consistent with both a dual process model of semantic priming and recent repetition priming data that suggest that reductions in BOLD responses represent neural priming associated with automatic semantic activation and implicate the left middle temporal cortex and inferior prefrontal cortex in more automatic aspects of semantic processing.