197 resultados para Scaled-particle Theory
A unified and complete construction of all finite dimensional irreducible representations of gl(2|2)
Resumo:
Representations of the non-semisimple superalgebra gl(2/2) in the standard basis are investigated by means of the vector coherent state method and boson-fermion realization. All finite-dimensional irreducible typical and atypical representations and lowest weight (indecomposable) Kac modules of gl(2/2) are constructed explicity through the explicit construction of all gl(2) circle plus gl(2) particle states (multiplets) in terms of boson and fermion creation operators in the super-Fock space. This gives a unified and complete treatment of finite-dimensional representations of gl(2/2) in explicit form, essential for the construction of primary fields of the corresponding current superalgebra at arbitrary level.
Resumo:
Polytomous Item Response Theory Models provides a unified, comprehensive introduction to the range of polytomous models available within item response theory (IRT). It begins by outlining the primary structural distinction between the two major types of polytomous IRT models. This focuses on the two types of response probability that are unique to polytomous models and their associated response functions, which are modeled differently by the different types of IRT model. It describes, both conceptually and mathematically, the major specific polytomous models, including the Nominal Response Model, the Partial Credit Model, the Rating Scale model, and the Graded Response Model. Important variations, such as the Generalized Partial Credit Model are also described as are less common variations, such as the Rating Scale version of the Graded Response Model. Relationships among the models are also investigated and the operation of measurement information is described for each major model. Practical examples of major models using real data are provided, as is a chapter on choosing an appropriate model. Figures are used throughout to illustrate important elements as they are described.
Resumo:
The Systems Theory Framework was developed to produce a metatheoretical framework through which the contribution of all theories to our understanding of career behaviour could be recognised. In addition it emphasises the individual as the site for the integration of theory and practice. Its utility has become more broadly acknowledged through its application to a range of cultural groups and settings, qualitative assessment processes, career counselling, and multicultural career counselling. For these reasons, the STF is a very valuable addition to the field of career theory. In viewing the field of career theory as a system, open to changes and developments from within itself and through constantly interrelating with other systems, the STF and this book is adding to the pattern of knowledge and relationships within the career field. The contents of this book will be integrated within the field as representative of a shift in understanding existing relationships within and between theories. In the same way, each reader will integrate the contents of the book within their existing views about the current state of career theory and within their current theory-practice relationship. This book should be required reading for anyone involved in career theory. It is also highly suitable as a text for an advanced career counselling or theory course.
Resumo:
OctVCE is a cartesian cell CFD code produced especially for numerical simulations of shock and blast wave interactions with complex geometries, in particular, from explosions. Virtual Cell Embedding (VCE) was chosen as its cartesian cell kernel for its simplicity and sufficiency for practical engineering design problems. The code uses a finite-volume formulation of the unsteady Euler equations with a second order explicit Runge-Kutta Godonov (MUSCL) scheme. Gradients are calculated using a least-squares method with a minmod limiter. Flux solvers used are AUSM, AUSMDV and EFM. No fluid-structure coupling or chemical reactions are allowed, but gas models can be perfect gas and JWL or JWLB for the explosive products. This report also describes the code’s ‘octree’ mesh adaptive capability and point-inclusion query procedures for the VCE geometry engine. Finally, some space will also be devoted to describing code parallelization using the shared-memory OpenMP paradigm. The user manual to the code is to be found in the companion report 2007/13.
Resumo:
Potential errors in the application of mixture theory to the analysis of multiple-frequency bioelectrical impedance data for the determination of body fluid volumes are assessed. Potential sources of error include: conductive length; tissue fluid resistivity; body density; weight and technical errors of measurement. Inclusion of inaccurate estimates of body density and weight introduce errors of typically < +/-3% but incorrect assumptions regarding conductive length or fluid resistivities may each incur errors of up to 20%.
Resumo:
The classical model of capillary equilibrium in cylindrical pores is modified here by the introduction of molecular concepts and the solid fluid interaction potential. The new approach accurately predicts capillary coexistence and criticality, with results quantitatively matching those from density functional theory for nitrogen adsorption, while also predicting condensation pressures in agreement with reported experimental findings for MCM-41. The larger critical pore size for nitrogen adsorption in these materials, however, suggests a modification of the potential function parameters, evaluated here from data for hydroxylated silica.
Resumo:
The large fat globules that can be present in UHT milk due to inadequate homogenisation cause a cream layer to form that limits the shelf life of UHT milk. Four different particle size measurement techniques were used to measure the size of fat globules in poorly homogenised UHT milk processed in a UHT pilot plant. The thickness of the cream layer that formed during storage was negatively correlated with homogenisation pressure. It was positively correlated with the mass mean diameter and the percentage volume of particles between 1.5 and 2 mu m diameter, as determined by laser light scattering using the Malvern Mastersizer. Also, the thickness of the cream layer was positively correlated with the volume mode diameter and the percentage volume of particles between 1.5 and 2 mu m diameter, as determined by electrical impedance using the Coulter Counter. The cream layer thickness did not correlate significantly with the Coulter Counter measurements of volume mean diameter, or volume percentages of particles between 2 and 5 mu m or 5 and 10 mu m diameter. Spectroturbidimetry (Emulsion Quality Analyser) and light microscopy analyses were found to be unsuitable for assessing the size of the fat particles. This study suggests that the fat globule size distribution as determined by the electrical impedance method (Coulter Counter) is the most useful for determining the efficiency of homogenisation and therefore for predicting the stability of the fat emulsion in UHT milk during storage.
Resumo:
The phenomenon of probability backflow, previously quantified for a free nonrelativistic particle, is considered for a free particle obeying Dirac's equation. It is known that probability backflow can occur in the opposite direction to the momentum; that is to say, there exist positive-energy states in which the particle certainly has a positive momentum in a given direction, but for which the component of the probability flux vector in that direction is negative. It is shown thar the maximum possible amount of probability that can flow backwards, over a given time interval of duration T, depends on the dimensionless parameter epsilon = root 4h/mc(2)T, where m is the mass of the particle and c is the speed of light. At epsilon = 0, the nonrelativistic value of approximately 0.039 for this maximum is recovered. Numerical studies suggest that the maximum decreases monotonically as epsilon increases from 0, and show that it depends on the size of m, h, and T, unlike the nonrelativistic case.
Resumo:
We consider the quantum field theory of two bosonic fields interacting via both parametric (cubic) and quartic couplings. In the case of photonic fields in a nonlinear optical medium, this corresponds to the process of second-harmonic generation (via chi((2)) nonlinearity) modified by the chi((3)) nonlinearity. The quantum solitons or energy eigenstates (bound-state solutions) are obtained exactly in the simplest case of two-particle binding, in one, two, and three space dimensions. We also investigate three-particle binding in one space dimension. The results indicate that the exact quantum solitons of this field theory have a singular, pointlike structure in two and three dimensions-even though the corresponding classical theory is nonsingular. To estimate the physically accessible radii and binding energies of the bound states, we impose a momentum cutoff on the nonlinear couplings. In the case of nonlinear optical interactions, the resulting radii and binding energies of these photonic particlelike excitations in highly nonlinear parametric media appear to be close to physically observable values.
Resumo:
This study explores the role of nurturing communication in distinguishing interpersonal and intergroup interactions between health professionals and patients, from the perspective of communication accommodation theory (CAT). Participants (47 men and 87 women) rated videotapes of actual hospital consultations on 12 goal and 16 strategy items derived from CAT. Health professionals in interpersonal interactions were perceived to pay more attention to relationship and emotional needs and to use more nurturant discourse management and emotional expression. These results point the way toward elucidating the perceived optimal balance in accommodative behavior, both group based and interpersonal, in these contexts, and they highlight the importance of nurturant communication to this process.