29 resultados para Satellite phones
Resumo:
Design and development of a photonic bandgap (PBG)-assisted shared-aperture dual-band orthogonal aperture-fed rectangular microstrip patch antenna element, which is suitable for a portable very small aperture terminal (VSAT), are presented in this paper. The dual-band dual-polarized antenna element achieves 21% input impedance bandwidth at the S- and C-bands. A comparison of the antenna with and without 2D PBG grids shows that the inclusion of PBG structures (PBGSs) improves the antenna performances. (c) 2005 Wiley Periodicals, Inc.
Resumo:
The relationship between the production of dimethylsulfide (DMS) in the upper ocean and atmospheric sulfate aerosols has been confirmed through local shipboard measurements, and global modeling studies alike. In order to examine whether such a connection may be recoverable in the satellite record, we have analyzed the correlation between mean surface chlorophyll (CHL) and aerosol optical depth (AOD) in the Southern Ocean, where the marine atmosphere is relatively remote from anthropogenic and continental influences. We carried out the analysis in 5-degree zonal bands between 50 degrees S and 70 degrees S, for the period ( 1997 - 2004), and in smaller meridional sectors in the Eastern Antarctic, Ross and Weddell seas. Seasonality is moderate to strong in both CHL and AOD signatures throughout the study regions. Coherence in the CHL and AOD time series is strong in the band between 50 degrees S and 60 degrees S, however this synchrony is absent in the sea-ice zone (SIZ) south of 60 degrees S. Marked interannual variability in CHL occurs south of 60 degrees S, presumably related to variability in sea-ice production during the previous winter. We find a clear latitudinal difference in the cross correlation between CHL and AOD, with the AOD peak preceding the CHL bloom by up to 6 weeks in the SIZ. This suggests that substantial trace gas emissions ( aerosol precursors) are being produced over the SIZ in spring ( October - December) as sea ice melts. This hypothesis is supported by field data that record extremely high levels of sulfur species in sea ice, surface seawater, and the overlying atmosphere during ice melt.
Resumo:
Government agencies responsible for riparian environments are assessing the combined utility of field survey and remote sensing for mapping and monitoring indicators of riparian zone health. The objective of this work was to determine if the structural attributes of savanna riparian zones in northern Australia can be detected from commercially available remotely sensed image data. Two QuickBird images and coincident field data covering sections of the Daly River and the South Alligator River - Barramundie Creek in the Northern Territory were used. Semi-variograms were calculated to determine the characteristic spatial scales of riparian zone features, both vegetative and landform. Interpretation of semi-variograms showed that structural dimensions of riparian environments could be detected and estimated from the QuickBird image data. The results also show that selecting the correct spatial resolution and spectral bands is essential to maximize the accuracy of mapping spatial characteristics of savanna riparian features. The distribution of foliage projective cover of riparian vegetation affected spectral reflectance variations in individual spectral bands differently. Pan-sharpened image data enabled small-scale information extraction (< 6 m) on riparian zone structural parameters. The semi-variogram analysis results provide the basis for an inversion approach using high spatial resolution satellite image data to map indicators of savanna riparian zone health.