34 resultados para Saranac Lake Region (N.Y.)--Remote-sensing maps.
Resumo:
Large areas of tropical sub- and inter-tidal seagrass beds occur in highly turbid environments and cannot be mapped through the water column. The purpose of this project was to determine if and how airborne and satellite imaging systems could be used to map inter-tidal seagrass properties along the wet-tropics coast in north Queensland, Australia. The work aimed to: (1) identify the minimum level of seagrass foliage cover that could be detected from airborne and satellite imagery; and (2) define the minimum detectable differences in seagrass foliage cover in exposed intertidal seagrass beds. High resolution spectral-reflectance data (2040 bands, 350 – 2500nm) were collected over 40cm diameter plots from 240 sites on Magnetic Island, Pallarenda Beach and Green Island in North Queensland at spring low tides in April 2006. The seagrass species sampled were: Thalassia hemprechii, Halophila ovalis, Halodule uninerivs; Syringodium isoetifolium, Cymodocea serrulata, and Cymodoea rotundata. Digital photos were captured for each plot and used to derive estimates of seagrass species cover, epiphytic growth, micro- and macro-algal cover, and substrate colour. Sediment samples were also collected and analysed to measure the concentration of Chlorophyll-a associated with benthic micro-algae. The field reflectance spectra were analysed in combination with their corresponding seagrass species foliage cover levels to establish the minimum foliage projective cover required for each seagrass to be significantly different from bare substrate and substrate with algal cover. This analysis was repeated with reflectance spectra resampled to the bandpass functions of Quickbird, Ikonos, SPOT 5 and Landsat 7 ETM. Preliminary results indicate that conservative minimum detectable seagrass cover levels across most the species sampled were between 30%- 35% on dark substrates. Further analysis of these results will be conducted to determine their separability and satellite images and to assess the effects epiphytes and algal cover.
Resumo:
Proceedings of the 11th Australasian Remote Sensing and Photogrammetry Conference
Resumo:
An epidemiologic survey among four administrative villages around Poyang Lake, in Jiangxi Province, China (two experimental and two controls) is being conducted to determine if bovine infections are responsible for the persistence of human schistosomiasis transmission on Yangtze River marshlands. A previously published paper presented the experimental design and baseline data for humans and bovines. This paper presents basic data for the four villages using remote sensing, and baseline data for snails that includes geographic information systems and remote sensing technology to classify the areas of bovine grazing ranges and habitats suitable for snails. A new method for sampling Oncomelania snails in China is used to determine the distribution, density, and infection rates of snails throughout the grazing ranges from season to season over a four-year period. Hypothetically, treating bovines should reduce infection rates in snails to below the critical number necessary to maintain infections in man and bovines.
Resumo:
This paper presents major findings from a recent study aiming to systematically determine suitable river sections for local domestic water supply along the Yangtze River in Jiangsu Province, China. On the basis of analysis on the current riverbank utilization and bank stability, accessible and stable river sections in the region were selected. The water quality in these river sections was then studied using a two-dimensional unsteady flow and pollutant transport/transformation model, RBFVM-2D. The model was calibrated and verified against the hydrodynamic data, water quality data and remote sensing data collected from the river. The investigation on the pollution sources along the river identified 56 main pollution point sources. The pollution zones downstream of these point sources are the main threat for the water quality in the river. The model was used to compute the pollution zones. In particular, simulations were conducted to establish the relationship between the extent of the pollution zone and the wastewater discharge rate of the associated point source. These water quality simulation results were combined with the riverbank stability analysis to determine suitable river sections for local domestic water supply.
Resumo:
The Wet Tropics World Heritage Area in Far North Queens- land, Australia consists predominantly of tropical rainforest and wet sclerophyll forest in areas of variable relief. Previous maps of vegetation communities in the area were produced by a labor-intensive combination of field survey and air-photo interpretation. Thus,. the aim of this work was to develop a new vegetation mapping method based on imaging radar that incorporates topographical corrections, which could be repeated frequently, and which would reduce the need for detailed field assessments and associated costs. The method employed G topographic correction and mapping procedure that was developed to enable vegetation structural classes to be mapped from satellite imaging radar. Eight JERS-1 scenes covering the Wet Tropics area for 1996 were acquired from NASDA under the auspices of the Global Rainforest Mapping Project. JERS scenes were geometrically corrected for topographic distortion using an 80 m DEM and a combination of polynomial warping and radar viewing geometry modeling. An image mosaic was created to cover the Wet Tropics region, and a new technique for image smoothing was applied to the JERS texture bonds and DEM before a Maximum Likelihood classification was applied to identify major land-cover and vegetation communities. Despite these efforts, dominant vegetation community classes could only be classified to low levels of accuracy (57.5 percent) which were partly explained by the significantly larger pixel size of the DEM in comparison to the JERS image (12.5 m). In addition, the spatial and floristic detail contained in the classes of the original validation maps were much finer than the JERS classification product was able to distinguish. In comparison to field and aerial photo-based approaches for mapping the vegetation of the Wet Tropics, appropriately corrected SAR data provides a more regional scale, all-weather mapping technique for broader vegetation classes. Further work is required to establish an appropriate combination of imaging radar with elevation data and other environmental surrogates to accurately map vegetation communities across the entire Wet Tropics.
Resumo:
Traditional field sampling approaches for ecological studies of restored habitat can only cover small areas in detail, con be time consuming, and are often invasive and destructive. Spatially extensive and non-invasive remotely sensed data can make field sampling more focused and efficient. The objective of this work was to investigate the feasibility and accuracy of hand-held and airborne remotely sensed data to estimate vegetation structural parameters for an indicator plant species in a restored wetland. High spatial resolution, digital, multispectral camera images were captured from an aircraft over Sweetwater Marsh (San Diego County, California) during each growing season between 1992-1996. Field data were collected concurrently, which included plant heights, proportional ground cover and canopy architecture type, and spectral radiometer measurements. Spartina foliosa (Pacific cordgrass) is the indicator species for the restoration monitoring. A conceptual model summarizing the controls on the spectral reflectance properties of Pacific cordgrass was established. Empirical models were developed relating the stem length, density, and canopy architecture of cordgrass to normalized-difference-vegetation-index values. The most promising results were obtained from empirical estimates of total ground cover using image data that had been stratified into high, middle, and low marsh zones. As part of on-going restoration monitoring activities, this model is being used to provide maps of estimated vegetation cover.
Resumo:
An assessment of the changes in the distribution and extent of mangroves within Moreton Bay, southeast Queensland, Australia, was carried out. Two assessment methods were evaluated: spatial and temporal pattern metrics analysis, and change detection analysis. Currently, about 15,000 ha of mangroves are present in Moreton Bay. These mangroves are important ecosystems, but are subject to disturbance from a number of sources. Over the past 25 years, there has been a loss of more than 3800 ha, as a result of natural losses and mangrove clearing (e.g. for urban and industrial development, agriculture and aquaculture). However, areas of new mangroves have become established over the same time period, offsetting these losses to create a net loss of about 200 ha. These new mangroves have mainly appeared in the southern bay region and the bay islands, particularly on the landward edge of existing mangroves. In addition, spatial patterns and species composition of mangrove patches have changed. The pattern metrics analysis provided an overview of mangrove distribution and change in the form of single metric values, while the change detection analysis gave a more detailed and spatially explicit description of change. An analysis of the effects of spatial scales on the pattern metrics indicated that they were relatively insensitive to scale at spatial resolutions less than 50 m, but that most metrics became sensitive at coarser resolutions, a finding which has implications for mapping of mangroves based on remotely sensed data. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
Soil erosion is a major environmental issue in Australia. It reduces land productivity and has off-site effects of decreased water quality. Broad-scale spatially distributed soil erosion estimation is essential for prioritising erosion control programs and as a component of broader assessments of natural resource condition. This paper describes spatial modelling methods and results that predict sheetwash and rill erosion over the Australian continent using the revised universal soil loss equation (RUSLE) and spatial data layers for each of the contributing environmental factors. The RUSLE has been used before in this way but here we advance the quality of estimation. We use time series of remote sensing imagery and daily rainfall to incorporate the effects of seasonally varying cover and rainfall intensity, and use new digital maps of soil and terrain properties. The results are compared with a compilation of Australian erosion plot data, revealing an acceptable consistency between predictions and observations. The modelling results show that: (1) the northern part of Australia has greater erosion potential than the south; (2) erosion potential differs significantly between summer and winter; (3) the average erosion rate is 4.1 t/ha. year over the continent and about 2.9 x 10(9) tonnes of soil is moved annually which represents 3.9% of global soil erosion from 5% of world land area; and (4) the erosion rate has increased from 4 to 33 times on average for agricultural lands compared with most natural vegetated lands.
The 23rd October 2002 dust storm in eastern Australia: characteristics and meteorological conditions
Resumo:
The dust storm of 23 October 2002 covered most of eastern Australia and carried one of the largest recorded dust loads in Australia. In the 6 months leading up to the event, severe drought conditions in eastern Australia, plus above average maximum temperatures resulted in high potential evapo-transpiration rates, producing severe soil moisture deficits and reduced vegetation cover. Although increased wind speeds associated with a fast moving cold front were the meteorological driving force, these winds speeds were lower than those for the previously documented large dust storms. The dust storm was 2400 km long, up to 400 km across and 1.5-2.5 km in height. The plume area was estimated at 840,860 km 2 and the dust load at 0900 h was 3.35-4.85 million tones (Mt). These dust load estimates are highly sensitive to assumptions, regarding visibility-dust concentration relationships, vertical dust concentration profiles and dust ceilings. The event is examined using meteorological records, remote sensing and air quality monitoring. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
To identify possible associations between host genetic factors and the onset of liver fibrosis following Schistosoma japonicum infection, the major histocompatibility class II alleles of 84 individuals living on an island (Jishan) endemic for schistosomiasis japonica in the Poyang Lake Region of Southern China were determined. Forty patients exhibiting advanced schistosomiasis, characterised by extensive liver fibrosis, and 44 age and sex-matched control subjects were assessed for the class II haplotypes HLA-DRBI and HLA-DQB1. Two HLA-DRB1 alleles, HLA-DRB1*0901 (P = 0.012) and *1302 (P = 0.039), and two HLA-DQB1 alleles, HLA-DQB1*0303 (P = 0.012) and *0609 (P = 0.037), were found to be significantly associated with susceptibility to fibrosis. These associated DRB1 and DQB1 alleles are in very strong linkage disequilibrium, with DRB1*0901-DQB1*0303 and DRB1*1302-DQB1*0609 found as: common haplotypes in this population. In contrast, the alleles HLA-DRB1*1501 (P = 0.025) and HLA-DQB 1*0601 (P = 0.022) were found to be associated with resistance to hepatosplenic disease. Moreover, the alleles DQB1*0303 and DRB1*0901 did not increase susceptibility in the presence of DQB1*0601, indicating that DQB1*0601 is dominant over DQB1*0303 and DRB1*0901. The study has thus identified both positive and negative associations between HLA class II alleles and the risk of individuals developing moderate to severe liver fibrosis following schistosome infection. (C) 2001 Australian Society for Parasitology Inc. Published by Elsevier Science Ltd. All rights reserved.
Resumo:
Schistosomiasis japonica is a serious communicable disease and a major disease risk for more than 30 million people living in the tropical and subtropical zones of China. Infection remains a major public health concern despite 45 years of intensive control efforts. It is estimated that 865, 000 people and 100,250 bovines are today infected in the provinces where the disease is endemic, and its transmission continues. Unlike tire other schistosome species known to infect humans, the oriental schistosome, Schistosoma japonicum, is a true zoonotic organism, with a range of mammalian reservoirs, making control efforts extremely difficult. Clinical features of schistosomiasis range from fever; headache, and lethargy to severe fibro-obstructive pathology leading to portal hypertension, ascites, and hepatosplenomegaly, which can cause premature death. Infected children ale stunted and have cognitive defects impairing memory and learning ability. Current control programs are heavily based on community chemotherapy with a single dose of the drug praziquantel, but vaccines (for use in bovines and humans) in combination with other control strategies ale needed to make elimination of the disease possible. In this article, we provide an overview of the biology, epidemiology clinical features, and prospects for cona ol of oriental schistosomiasis in the People's Republic of China.