156 resultados para Sanitary wastewater


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Laboratory-scale sequencing batch reactors (SBRs) as models for wastewater treatment processes were used to identify glycogen-accumulating organisms (GAOs), which are thought to be responsible for the deterioration of enhanced biological phosphorus removal (EBPR). The SBRs (called Q and T), operated under alternating anaerobic-aerobic conditions typical for EBPR, generated mixed microbial communities (sludges) demonstrating the GAO phenotype. Intracellular glycogen and poly-beta-hydroxyalkanoate (PHA) transformations typical of efficient EBPR occurred but polyphosphate was not bioaccumulated and the sludges contained 1.8% P (sludge Q) and 1.5% P (sludge T). 16S rDNA clone libraries were prepared from DNA extracted from the Q and T sludges. Clone inserts were grouped into operational taxonomic units (OTUs) by restriction fragment length polymorphism banding profiles. OTU representatives were sequenced and phylogenetically analysed. The Q sludge library comprised four OTUs and all six determined sequences were 99.7% identical, forming a cluster in the gamma-Proteobacteria radiation. The T sludge library comprised eight OTUs and the majority of clones were Acidobacteria subphylum 4 (49% of the library) and candidate phylum OPU (39% of the library). One OTU (two clones, of which one was sequenced) was in the gamma-Proteobacteria radiation with 95% sequence identity to the Q sludge clones. Oligonucleotide probes (called GAOQ431 and GAOQ989) were designed from the gamma-Proteobacteria clone sequences for use in fluorescence in situ hybridization (FISH); 92 % of the Q sludge bacteria and 28 % of the T sludge bacteria bound these probes in FISH. FISH and post-FISH chemical staining for PHA were used to determine that bacteria from a novel gamma-Proteobacteria cluster were phenotypically GAOs in one laboratory-scale SBR and two fullscale wastewater treatment plants. It is suggested that the GAOs from the novel cluster in the gamma-Proteobacteria radiation be named 'Candidatus Competibacter phosphatis'.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of the new TOGA (titration and off-gas analysis) sensor for the detailed study of biological processes in wastewater treatment systems is outlined. The main innovation of the sensor is the amalgamation of titrimetric and off-gas measurement techniques. The resulting measured signals are: hydrogen ion production rate (HPR), oxygen transfer rate (OTR), nitrogen transfer rate (NTR), and carbon dioxide transfer rate (CTR). While OTR and NTR are applicable to aerobic and anoxic conditions, respectively, HPR and CTR are useful signals under all of the conditions found in biological wastewater treatment systems, namely, aerobic, anoxic and anaerobic. The sensor is therefore a powerful tool for studying the key biological processes under all these conditions. A major benefit from the integration of the titrimetric and off-gas analysis methods is that the acid/base buffering systems, in particular the bicarbonate system, are properly accounted for. Experimental data resulting from the TOGA sensor in aerobic, anoxic, and anaerobic conditions demonstrates the strength of the new sensor. In the aerobic environment, carbon oxidation (using acetate as an example carbon source) and nitrification are studied. Both the carbon and ammonia removal rates measured by the sensor compare very well with those obtained from off-line chemical analysis. Further, the aerobic acetate removal process is examined at a fundamental level using the metabolic pathway and stoichiometry established in the literature, whereby the rate of formation of storage products is identified. Under anoxic conditions, the denitrification process is monitored and, again, the measured rate of nitrogen gas transfer (NTR) matches well with the removal of the oxidised nitrogen compounds (measured chemically). In the anaerobic environment, the enhanced biological phosphorus process was investigated. In this case, the measured sensor signals (HPR and CTR) resulting from acetate uptake were used to determine the ratio of the rates of carbon dioxide production by competing groups of microorganisms, which consequently is a measure of the activity of these organisms. The sensor involves the use of expensive equipment such as a mass spectrometer and requires special gases to operate, thus incurring significant capital and operational costs. This makes the sensor more an advanced laboratory tool than an on-line sensor. (C) 2003 Wiley Periodicals, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An operational space map is an efficient tool to compare a large number of operational strategies to find an optimal choice of setpoints based on a multicriterion. Typically, such a multicriterion includes a weighted sum of cost of operation and effluent quality. Due to the relative high cost of aeration such a definition of optimality result in a relatively high fraction of the effluent total nitrogen in the form of ammonium. Such a strategy may however introduce a risk into operation because a low degree of ammonium removal leads to a low amount of nitrifiers. This in turn leads to a reduced ability to reject event disturbances, such as large variations in the ammonium load, drop in temperature, the presence of toxic/inhibitory compounds in the influent etc. Hedging is a risk minimisation tool, with the aim to "reduce one's risk of loss on a bet or speculation by compensating transactions on the other side" (The Concise Oxford Dictionary (1995)). In wastewater treatment plant operation hedging can be applied by choosing a higher level of ammonium removal to increase the amount of nitrifiers. This is a sensible way to introduce disturbance rejection ability into the multi criterion. In practice, this is done by deciding upon an internal effluent ammonium criterion. In some countries such as Germany, a separate criterion already applies to the level of ammonium in the effluent. However, in most countries the effluent criterion applies to total nitrogen only. In these cases, an internal effluent ammonium criterion should be selected in order to secure proper disturbance rejection ability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fault detection and isolation (FDI) are important steps in the monitoring and supervision of industrial processes. Biological wastewater treatment (WWT) plants are difficult to model, and hence to monitor, because of the complexity of the biological reactions and because plant influent and disturbances are highly variable and/or unmeasured. Multivariate statistical models have been developed for a wide variety of situations over the past few decades, proving successful in many applications. In this paper we develop a new monitoring algorithm based on Principal Components Analysis (PCA). It can be seen equivalently as making Multiscale PCA (MSPCA) adaptive, or as a multiscale decomposition of adaptive PCA. Adaptive Multiscale PCA (AdMSPCA) exploits the changing multivariate relationships between variables at different time-scales. Adaptation of scale PCA models over time permits them to follow the evolution of the process, inputs or disturbances. Performance of AdMSPCA and adaptive PCA on a real WWT data set is compared and contrasted. The most significant difference observed was the ability of AdMSPCA to adapt to a much wider range of changes. This was mainly due to the flexibility afforded by allowing each scale model to adapt whenever it did not signal an abnormal event at that scale. Relative detection speeds were examined only summarily, but seemed to depend on the characteristics of the faults/disturbances. The results of the algorithms were similar for sudden changes, but AdMSPCA appeared more sensitive to slower changes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper an approach to extreme event control in wastewater treatment plant operation by use of automatic supervisory control is discussed. The framework presented is based on the fact that different operational conditions manifest themselves as clusters in a multivariate measurement space. These clusters are identified and linked to specific and corresponding events by use of principal component analysis and fuzzy c-means clustering. A reduced system model is assigned to each type of extreme event and used to calculate appropriate local controller set points. In earlier work we have shown that this approach is applicable to wastewater treatment control using look-up tables to determine current set points. In this work we focus on the automatic determination of appropriate set points by use of steady state and dynamic predictions. The performance of a relatively simple steady-state supervisory controller is compared with that of a model predictive supervisory controller. Also, a look-up table approach is included in the comparison, as it provides a simple and robust alternative to the steady-state and model predictive controllers, The methodology is illustrated in a simulation study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Development of a granular sludge with high strength, high biological activity and a narrow settling distribution is necessary for optimal operation of high-rate upflow anaerobic treatment systems. Several studies have compared granules produced from different wastewaters but these have largely been from laboratory-fed reactors or compared granules from full-scale reactors fed similar wastewater types. Though two authors have commented on the inferiority of granules produced by a protein-based feed, the properties of these granules have not been characterised. In this paper, granules from full-scale reactors treating fruit and vegetable cannery effluent, two brewery effluents and a pig abattoir (slaughterhouse) were compared in terms of basic composition, size distribution, density, settling velocity, shear strength, and EPS content. The results supported previous qualitative observations by other researchers that indicate granule properties depend more on wastewater type rather than reactor design or operating conditions such as pre-acidification level. The cannery-fed granules bad excellent shear strength, settling distribution and density. Granules from the two brewery-fed reactors had statistically the same bulk properties, which were still acceptable for upflow applications. The protein-grown granule had poor strength and settling velocity. (C) 2001 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The two steps of nitrification, namely the oxidation of ammonia to nitrite and nitrite to nitrate, often need to be considered separately in process studies. For a detailed examination, it is desirable to monitor the two-step sequence using online measurements. In this paper, the use of online titrimetric and off-gas analysis (TOGA) methods for the examination of the process is presented. Using the known reaction stoichiometry, combination of the measured signals (rates of hydrogen ion production, oxygen uptake and carbon dioxide transfer) allows the determination of the three key process rates, namely the ammonia consumption rate, the nitrite accumulation rate and the nitrate production rate. Individual reaction rates determined with the TOGA sensor under a number of operation conditions are presented. The rates calculated directly from the measured signals are compared with those obtained from offline liquid sample analysis. Statistical analysis confirms that the results from the two approaches match well. This result could not have been guaranteed using alternative online methods. As a case study, the influences of pH and dissolved oxygen (DO) on nitrite accumulation are tested using the proposed method. It is shown that nitrite accumulation decreased with increasing DO and pH. Possible reasons for these observations are discussed. (C) 2003 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Activated sludge floes are a flocculated mass of microorganisms, extracellular polymeric substances (EPS) and adsorbed organic and inorganic material. The structure of the floes is very heterogeneous and floes with very different properties and morphologies may occur, depending on the conditions in the activated sludge treatment plant and wastewater composition. Present thinking suggests that cations, such as calcium, create cationic bridges with EPS excreted by the bacteria and thereby hold the various floe constituents together. However, due to the complex and heterogeneous nature of activated sludge, the mechanisms have neither been thoroughly investigated nor successfully quantified. A better understanding and description of the biological flocculation process is necessary in order to establish more efficient operational strategies. The main aim of this study was to get a comprehensive and unique insight into the floe properties of activated sludge and to assess the relative impact of chemical and physical parameters. A variety of sludges from full scale treatment plants with different settling properties were characterised. The interrelationships between floe parameters such as composition of EPS, surface properties and floe structure, and their effect on the flocculation and separation properties were assessed. The results indicate that the EPS, both in terms of quantity and quality, are very important for the floe properties of the activated sludge. However, presence of filaments may alter the physical properties of the floes considerably. The EPS showed positive correlations to sludge volume index (SVI) if only sludges with low or moderate numbers of filaments were included. The surface properties were more affected by the composition of the EPS than by the number of filaments. The EPS showed positive correlation to negative surface charge and a negative correlation to relative hydrophobicity and flocculation ability. The negative correlation between flocculation ability and amount of EPS was surprising. The shear sensitivity, measured as degree of erosion of floes when subjected to shear, was more affected by floe size and number of filaments than amount of EPS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study is to quantity the effect of filter bed depth and solid waste inputs on the performance of small-scale vermicompost filter beds that treat the soluble contaminants within domestic wastewater. The study also aims to identify environmental conditions within the filters by quantifying the oxygen content and pH of wastewater held within it. Vermicompost is being utilised within commercially available on-site domestic waste treatment systems however, there are few reported studies that have examined this medium for the purpose of wastewater treatment. Three replicate small-scale reactors were designed to enable wastewater sampling at five reactor depths in 10-cm intervals. The surface of each reactor received household solid organic waste and 1301 m(-2) per day of raw domestic wastewater. The solid waste at the filter bed surface leached oxygen demand into the wastewater flowing through it. The oxygen demand was subsequently removed in lower reactor sections. Both nitrification and denitrification occurred in the bed. The extent of denitrification was a function of BOD leached from the solid waste. The environmental conditions measured within the bed were found to be suitable for earthworms living within them. The study identified factors that will affect the performance and application of the vermicompost filtration technology. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The research was aimed at developing a technology to combine the production of useful microfungi with the treatment of wastewater from food processing. A recycle bioreactor equipped with a micro-screen was developed as a wastewater treatment system on a laboratory scale to contain a Rhizopus culture and maintain its dominance under non-aseptic conditions. Competitive growth of bacteria was observed, but this was minimised by manipulation of the solids retention time and the hydraulic retention time. Removal of about 90% of the waste organic material (as BOD) from the wastewater was achieved simultaneously. Since essentially all fungi are retained behind the 100 mum aperture screen, the solids retention time could be controlled by the rate of harvesting. The hydraulic retention time was employed to control the bacterial growth as the bacteria were washed through the screen at a short HRT. A steady state model was developed to determine these two parameters. This model predicts the effluent quality. Experimental work is still needed to determine the growth characteristics of the selected fungal species under optimum conditions (pH and temperature).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fluorescence in situ hybridization (FISH) was performed to analyze the nitrifying microbial communities in an activated sludge reactor (ASR) and a fixed biofilm reactor (FBR) for piggery wastewater treatment. Heterotrophic oxidation and nitrification were occurring simultaneously in the ASR and the COD and nitrification efficiencies depend on the loads. In the FBR nitrification efficiency also depends on ammonium load to the reactor and nitrite was accumulated when free ammonia concentration was higher than 0.2 mg NH3-N/L. FISH analysis showed that ammonia-oxidizing bacteria (NSO1225) and denitrifying bacteria (RRP1088) were less abundant than other bacteria (EUB338) in ASR. Further analysis on nitrifying bacteria in the FBR showed that Nitrosomonas species (NSM156) and Nitrospira species (NSR1156) were the dominant ammonia-oxidizing and nitrite-oxidizing bacteria, respectively, in the piggery wastewater nitrification system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Simultaneous nitrification and denitrification (SND) via the nitrite pathway and anaerobic-anoxic enhanced biological phosphorus removal (EBPR) are two processes that can significantly reduce the COD demand for nitrogen and phosphorus removal. The combination of these two processes has the potential of achieving simultaneous nitrogen and phosphorus removal with a minimal requirement for COD. A lab-scale sequencing batch reactor (SBR) was operated in alternating anaerobic-aerobic mode with a low dissolved oxygen concentration (DO, 0.5 mg/L) during the aerobic period, and was demonstrated to accomplish nitrification, denitrification and phosphorus removal. Under anaerobic conditions, COD was taken up and converted to polyhydroxyalkanoates (PHA), accompanied with phosphorus release. In the subsequent aerobic stage, PHA was oxidized and phosphorus was taken up to less than 0.5 mg/L at the end of the cycle. Ammonia was also oxidised during the aerobic period, but without accumulation of nitrite or nitrate in the system, indicating the occurrence of simultaneous nitrification and denitrification. However, off-gas analysis found that the final denitrification product was mainly nitrous oxide (N2O) not N-2. Further experimental results demonstrated that nitrogen removal was via nitrite, not nitrate. These experiments also showed that denitrifying glycogen.-accumulating organisms rather than denitrifying polyphosphate-accumulating organisms were responsible for the denitrification activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Due to the complexities involved with measuring activated sludge floc size distributions, this parameter has largely been ignored by wastewater researchers and practitioners. One of the major reasons has been that instruments able to measure particle size distributions were complex, expensive and only provided off-line measurements. The Focused Beam Reflectance Method (FBRM) is one of the rare techniques able to measure the particle size distribution in situ. This paper introduces the technique for monitoring wastewater treatment systems and compares its performance with other sizing techniques. The issue of the optimal focal point is discussed, and similar conclusions as found in the literature for other particulate systems are drawn. The study also demonstrates the capabilities of the FBRM in evaluating the performance of settling tanks. Interestingly, the floc size distributions did not vary with position inside the settling tank flocculator. This was an unexpected finding, and seriously questioned the need for a flocculator in the settling tank. It is conjectured that the invariable size distributions were caused by the unique combination of high solids concentration, low shear and zeolite dosing. (C) 2004 Society of Chemical Industry.