50 resultados para SOLID OXIDE FUEL CELLS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Microbial fuel cell (MFC) research is a rapidly evolving field that lacks established terminology and methods for the analysis of system performance. This makes it difficult for researchers to compare devices on an equivalent basis. The construction and analysis of MFCs requires knowledge of different scientific and engineering fields, ranging from microbiology and electrochemistry to materials and environmental engineering. DescribingMFCsystems therefore involves an understanding of these different scientific and engineering principles. In this paper, we provide a review of the different materials and methods used to construct MFCs, techniques used to analyze system performance, and recommendations on what information to include in MFC studies and the most useful ways to present results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The operation of polymer electrolyte membrane fuel cells (PEMFCs) with dry feeds has been examined with different fuel cell flow channel designs as functions of pressure, temperature and flow rate. Auto-humidified (or self-humidifying) PEMFC operation is improved at higher pressures and low gas velocities where axial dispersion enhances back-mixing of the product water with the dry feed. We demonstrate auto-humidified operation of the channel-less, self-draining fuel cell, based on a stirred tank reactor; data is presented showing auto-humidified operation from 25 to 115 degrees C at 1 and 3 atm. Design and operating requirements are derived for the auto-humidified operation of the channel-less, self-draining fuel cell. The auto-humidified self-draining fuel cell outperforms a fully humidified serpentine flow channel fuel cell at high current densities. The new design offers substantial benefits for simplicity of operation and control including: the ability to self-drain reducing flooding, the ability to uniformly disperse water removing current gradients and the ability to operate on dry feeds eliminating the need for humidifiers. Additionally, the design lends itself well to a modular design concept. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Titanium phosphate is currently a promising material for proton exchange membrane fuel cells applications (PEMFC) allowing for operation at high temperature conditions. In this work, titanium phosphate was synthesized from tetra iso-propoxide (TTIP) and orthophosphoric acid (H3PO4) in different ratios by a sol gel method. High BET surface areas of 271 m(2).g(-1) were obtained for equimolar Ti:P samples whilst reduced surface areas were observed by varying the molar ratio either way. Highest proton conductivity of 5.4 x 10(-2) S.cm(-1) was measured at 20 degrees C and 93% relative humidity (RH). However, no correlation was observed between surface area and proton conductivity. High proton conductivity was directly attributed to hydrogen bonding in P-OH groups and the water molecules retained in the sample structure. The proton conductivity increased with relative humidity, indicating that the Grotthuss mechanism governed proton transport. Further, sample Ti/P with 1:9 molar ratio showed proton conductivity in the order of 10(-1) S.cm(-1) (5% RH) and similar to 1.6x10(-2) S.cm(-1) (anhydrous condition) at 200 degrees C. These proton conductivities were mainly attributed to excess acid locked into the functionalized TiP structure, thus forming ionisable protons.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most of the hydrogen production processes are designed for large-scale industrial uses and are not suitable for a compact hydrogen device to be used in systems like solid polymer fuel cells. Integrating the reaction step, the gas purification and the heat supply can lead to small-scale hydrogen production systems. The aim of this research is to study the influence of several reaction parameters on hydrogen production using liquid phase reforming of sugar solution over Pt, Pd, and Ni supported on nanostructured supports. It was found that the desired catalytic pathway for H-2 production involves cleavage of C-C, C-H and O-H bonds that adsorb on the catalyst surface. Thus a good catalyst for production of H2 by liquid-phase reforming must facilitate C-C bond cleavage and promote removal of adsorbed CO species by the water-gas shift reaction, but the catalyst must not facilitate C-O bond cleavage and hydrogenation of CO or CO2. Apart from studying various catalysts, a commercial Pt/gamma-alumina catalyst was used to study the effect of temperature at three different temperatures of 458, 473 and 493 K. Some of the spent catalysts were characterised using TGA, SEM and XRD to study coke deposition. The amorphous and organised form of coke was found on the surface of the catalyst. (C) 2006 International Association for Hydrogen Energy. Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Worldwide, research and policy momentum is increasing in the move towards a hydrogen economy. Australia is one of the highest per capita users of energy, but relies heavily on fossil fuels to fulfil its energy requirements-thus making it one of the highest per capita polluters. It is also a country rich in natural resources, giving it the full range of options for a hydrogen economy. With the first Australian Hydrogen Study being completed by the end of 2003, there has as yet been little analysis of the options available to this country specifically. This paper reviews the resources, production and utilisation technology available for a hydrogen economy in Australia, and discusses some of the advantages and disadvantages of the different options. It points out that coal, natural gas, biomass and water are the most promising hydrogen sources at this stage, while solid oxide and molten carbonate fuel cells may hold the advantage in terms of current expertise for utilising hydrogen rich gases for stationary power in Australia. (c) 2004 International Association for Hydrogen Energy. Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Environmental issues due to increases in emissions of air pollutants and greenhouse gases are driving the development of clean energy delivery technologies such as fuel cells. Low temperature Proton Exchange Membrane Fuel Cells (PEMFC) use hydrogen as a fuel and their only emission is water. While significant advances have been made in recent years, a major limitation of the current technology is the cost and materials limitations of the proton conduction membrane. The proton exchange membrane performs three critical functions in the PEMFC membrane electrode assembly (MEA): (i) conduction of protons with minimal resistance from the anode (where they are generated from hydrogen) to the cathode (where they combine with oxygen and electrons, from the external circuit or load), (ii) providing electrical insulation between the anode and cathode to prevent shorting, and (iii) providing a gas impermeable barrier to prevent mixing of the fuel (hydrogen) and oxidant. The PFSA (perfluorosulphonic acid) family of membranes is currently the best developed proton conduction membrane commercially available, but these materials are limited to operation below 100oC (typically 80oC, or lower) due to the thermochemical limitations of this polymer. For both mobile and stationary applications, fuel cell companies require more durable, cost effective membrane technologies capable of delivering enhanced performance at higher temperatures (typically 120oC, or higher. This is driving research into a wide range of novel organic and inorganic materials with the potential to be good proton conductors and form coherent membranes. There are several research efforts recently reported in the literature employing inorganic nanomaterials. These include functionalised silica phosphates [1,2], fullerene [3] titania phosphates [4], zirconium pyrophosphate [5]. This work addresses the functionalisation of titania particles with phosphoric acid. Proton conductivity measurements are given together with structural properties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A platinum (Pt) on pure ceria (CeO2) supported by carbon black (CB) anode was synthesized using a combined process of precipitation and coimpregnation methods. The electrochemical activity of methanol oxidation reaction on synthesized Pt-CeO2/CB anodes was investigated by cyclic voltammetry and chronoamperometry experimentation. To improve the anode property on Pt-CeO2/CB, the influence of particle morphology and particle size on anode properties was examined. The morphology and particle size of the pure CeO2 particles could be controlled by changing the preparation conditions. The anode properties (i.e., peak current density and onset potential for methanol oxidation) were improved by using nanosize CeO2 particles. This indicates that a larger surface area and higher activity on the surface of CeO2 improve the anode properties. The influence of particle morphology of CeO2 on anode properties was not very large. The onset potential for methanol oxidation reaction on Pt-CeO2/CB, which consisted of CeO2 with a high surface area, was shifted to a lower potential compared with that on the anodes, which consisted of CeO2 with a low surface area. The onset potential on Pt-CeO2/CB at 60 degrees C became similar to that on the commercially available Pt-Ru/carbon anode. We suggest that the rate-determining steps of the methanol oxidation reaction on Pt-CeO2/CB and commercially available Pt-Ru/carbon anodes are different, which accounts for the difference in performance. In the reaction mechanism on Pt-CeO2/CB, we conclude that the released oxygen species from the surface of CeO2 particles contribute to oxidation of adsorbed CO species on the Pt surface. This suggests that the anode performance of the Pt-CeO2/CB anode would lead to improvements in the operation of direct methanol fuel cells at 80 degrees C by the enhancement of diffusion of oxygen species created from the surface of nanosized CeO2 particles. Therefore, we conclude that fabrication of nanosized CeO2 with a high surface area is a key factor for development of a high-quality Pt-CeO2/CB anode in direct methanol fuel cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Carbons with slitlike pores can serve as effective host materials for storage of hythane fuel, a bridge between the petrol combustion and hydrogen fuel cells. We have used grand canonical Monte Carlo simulation for the modeling of the hydrogen and methane mixture storage at 293 K and pressure of methane and hydrogen mixture up to 2 MPa. We have found that these pores serve as efficient vessels for the storage of hythane fuel near ambient temperatures and low pressures. We find that, for carbons having optimized slitlike pores of size H congruent to 7 angstrom ( pore width that can accommodate one adsorbed methane layer), and bulk hydrogen mole fraction >= 0.9, the volumetric stored energy exceeds the 2010 target of 5.4 MJ dm(-3) established by the U. S. FreedomCAR Partnership. At the same condition, the content of hydrogen in slitlike carbon pores is congruent to 7% by energy. Thus, we have obtained the composition corresponding to hythane fuel in carbon nanospaces with greatly enhanced volumetric energy in comparison to the traditional compression method. We proposed the simple system with added extra container filled with pure free/adsorbed methane for adjusting the composition of the desorbed mixture as needed during delivery. Our simulation results indicate that light slit pore carbon nanomaterials with optimized parameters are suitable filling vessels for storage of hythane fuel. The proposed simple system consisting of main vessel with physisorbed hythane fuel, and an extra container filled with pure free/adsorbed methane will be particularly suitable for combustion of hythane fuel in buses and passenger cars near ambient temperatures and low pressures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The microstructures and electrolytic properties of YxCe1-xO2-x/2 (x = 0.10-0.25) electrolytes with average grain size in the range 90 nm-1.7 mu m were systematically investigated. Through detailed transmission electron microscopy characterization, nanosized domains were observed. The relationship of the domains, the doping level and grain sizes were determined, and their impacts on the electrolytic properties were systematically studied. It was found that the formation of domains has a negative impact on the electrolytic properties, so that electrolytic properties can be adjusted through careful control of domain formation, doping level and grain size. (c) 2006 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fuel cell systems offer excellent efficiencies when compared to internal combustion engines, which result in reduced fuel consumption and greenhouse gas emissions. One of the areas requiring research for the success of fuel cell technology is the H2 fuel purification to reduce CO, which is a poison to fuel cells. Molecular sieve silica (MSS) membranes have a potential application in this area. In this work showed activated transport, a characteristic of ultramicroporous (dp

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fluoropolymers are known as chemically inert materials with good high temperature resistance, so they are often the materials of choice for harsh chemical environments. These properties arise because the carbon-fluorine bond is the strongest of all bonds between other elements and carbon, and, because of their large size, fluorine atoms can protect the carbon backbone of polymers such as poly(tetrafluoroethylene), PTFE, from chemical attack. However, while the carbon-fluorine bond is much stronger than the carbon hydrogen bond, the G values for radical formation on high energy radiolysis of fluoropolymers are roughly comparable to those of their protonated counterparts. Thus, efficient high energy radiation grafting of fluoropolymers is practical, and this process can be used to modify either the surface or bulk properties of a fluoropolymer. Indeed, radiation grafted fluoropolymers are currently being used as separation membranes for fuel cells, hydrophilic filtration membranes and matrix substrate materials for use in combinatorial chemistry. Herein we present a review of recent studies of the high energy radiation grafting of fluoropolymers and of the analytical methods available to characterize the grafts. (C) 2003 Elsevier Ltd. All rights reserved.