98 resultados para SINGLE NEURONS
Resumo:
We investigated the properties of calcium-activated chloride channels in inside-out membrane patches from the dendritic knobs of acutely dissociated rat olfactory receptor neurons. Patches typically contained large calcium-activated currents, with total conductances in the range 30-75 nS. The dose response curve for calcium exhibited an EC50 of about 26 mu M. In symmetrical NaCl solutions, the current-voltage relationship reversed at 0 mV and was linear between -80 and +70 mV. When the intracellular NaCl concentration was progressively reduced from 150 to 25 mM, the reversal potential changed in a manner consistent with a chloride-selective conductance. Indeed, modeling these data with the Goldman-Hodgkin-Katz equation revealed a P-Na/P-Cl of 0.034. The halide permeability sequence was P-Cl > P-F > P-I > P-Br indicating that permeation through the channel was dominated by ion binding sites with a high field strength. The channels were also permeable to the large organic anions, SCN-, acetate(-), and gluconate(-), with the permeability sequence P-Cl > P-SCN > gluconaie. Significant permeation to gluconate ions suggested that the channel pore had a minimum diameter of at least 5.8 Angstrom.
Resumo:
The hydrogenation of cyclohexene over palladium supported in a microporous gamma-alumina pellet is studied thermogravimetrically with a view to measuring the extent of partial internal wetting associated with the different steady state branches. As many as three steady state branches having significantly different degrees of internal wetting and reaction rates, with transitions between them, are confirmed from observations of catalyst weight change. It is seen that with reduction in catalyst activity the middle branch, obtained by condensation from a vapor filled pellet, is much more prominent without showing an evaporative transition for the range of hydrogen partial pressures used here. The catalyst activity is therefore an important parameter affecting the structure of the steady state branches. Hysteresis effects are found to occur, and the thermogravimetric results also confirm the importance of history in determining the catalyst state. The measured degree of wetting is in accordance with that estimated from a mathematical model incorporating capillary condensation effects in addition to reaction-diffusion phenomena. The same model also satisfactorily interprets the reaction rate variations and transitions seen in the present work.
Resumo:
Control of chaos in the single-mode optically pumped far-infrared (NH3)-N-15 laser is experimentally demonstrated using continuous time-delay control. Both the Lorenz spiral chaos and the detuned period-doubling chaos exhibited by the laser have been controlled. While the laser is in the Lorenz spiral chaos regime the chaos has been controlled both such that the laser output is cw, with corrections of only a fraction of a percent necessary to keep it there, and to period one. The laser has also been controlled while in the period-doubling chaos regime, to both the period-one and -two states.
Resumo:
Objective: To improve the success of culturing olfactory neurons from human nasal mucosa by investigating the intranasal distribution of the olfactory epithelium and devising new techniques for growing human olfactory epithelium in vitro. Design: Ninety-seven biopsy specimens were obtained from 33 individuals, aged 21 to 74 years, collected from 6 regions of the nasal cavity. Each biopsy specimen was bisected, and 1 piece was processed for immunohistochemistry or electron microscopy while the other piece was dissected further for explant culture. Four culture techniques were performed, including whole explants and explanted biopsy slices. Five days after plating, neuronal differentiation was induced by means of a medium that contained basic fibroblast growth factor. After another 5 days, cultures were processed for immunocytochemical analysis. Results: The probability of finding olfactory epithelium in a biopsy specimen ranged from 30% to 76%, depending on its location. The dorsoposterior regions of the nasal septum and the superior turbinate provided the highest probability, but, surprisingly, olfactory epithelium was also found anteriorly and ventrally on both septum and turbinates. A new method of culturing the olfactory epithelium was devised. This slice culture technique improved the success rate for generating olfactory neurons from 10% to 90%. Conclusions: This study explains and overcomes most of the variability in the success in observing neurogenesis in cultures of adult human olfactory epithelium. The techniques presented here make the human olfactory epithelium a useful model for clinical research into certain olfactory dysfunctions and a model for the causes of neurodevelopmental and neurodegenerative diseases.
Resumo:
Whole-cell patch clamp recordings were made from pyramidal neurons in the rat lateral amygdala (LA). Synaptic currents were evoked by stimulating in either the external capsule (ec), internal capsule (ic) or basolateral nucleus (BLA). Stimulation of either the ic, ec or BLA evoked a glutamatergic excitatory synaptic current (EPSC) which was mediated by both non-NMDA and NMDA (N-methyl-D-aspartic acid) receptors, The ratio of the amplitude of the NMDA receptor-mediated component measured at +40 mV to the amplitude of the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) component measured at -60 mV was similar regardless of whether EPSCs were evoked in the ec, ic or BLA. At resting membrane potentials, excitatory synaptic potentials evoked from either the ec or putative thalamic inputs were unaffected by application of the NMDA receptor antagonist APV. Spontaneous glutamatergic currents had two components to their decay phase. The slow component was selectively blocked by the NMDA receptor antagonist D-APV, indicating that AMPA and NMDA receptors are colocalized in spiny neurons. We conclude that pyramidal cells of the LA receive convergent inputs from the cortex, thalamus and basal nuclei. At all inputs, both AMPA/kainate and NMDA-type receptors are active and colocalized in the postsynaptic density.
Resumo:
The identity of the potassium channel underlying the slow, apamin-insensitive component of the afterhyperpolarization current (sl(AHP)) remains unknown. We studied sl(AHP) in CA1 pyramidal neurons using simultaneous whole-cell recording, calcium fluorescence imaging, and flash photolysis of caged compounds. Intracellular calcium concentration ([Ca2+](i)) peaked earlier and decayed more rapidly than sl(AHP). Loading cells with low concentrations of the calcium chelator EGTA slowed the activation and decay of sl(AHP). In the presence of EGTA, intracellular calcium decayed with two time constants. When [Ca2+](i) was increased rapidly after photolysis of DM-Nitrophen, both apamin-sensitive and apamin-insensitive outward currents were activated. The apamin-sensitive current activated rapidly (<20 msec), whereas the apamin-insensitive current activated more slowly (180 msec). The apamin-insensitive current was reduced by application of serotonin and carbachol, confirming that it was caused by sl(AHP) channels. When [Ca2+](i) was decreased rapidly via photolysis of diazo-2, the decay of sl(AHP) was similar to control (1.7 sec). All results could be reproduced by a model potassium channel gated by calcium, suggesting that the channels underlying sl(AHP) have intrinsically slow kinetics because of their high affinity for calcium.
Resumo:
In the adult olfactory nerve pathway of rodents, each primary olfactory axon forms a terminal arbor in a single glomerulus in the olfactory bulb. During development, axons are believed to project directly to and terminate precisely within a glomerulus without any exuberant growth or mistargeting. To gain insight into mechanisms underlying this process, the trajectories of primary olfactory axons during glomerular formation were studied in the neonatal period. Histochemical staining of mouse olfactory bulb sections with the lectin Dolichos biflorus-agglutinin revealed that many olfactory axons overshoot the glomerular layer and course into the deeper laminae of the bulb in the early postnatal period. Single primary olfactory axons were anterogradely labelled either with the lipophilic carbocyanine dye, 1,1'-dioctodecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI), or with horseradish peroxidase (HRP) by localized microinjections into the nerve fiber layer of the rat olfactory bulb. Five distinct trajectories of primary olfactory axons were observed in DLI-labelled preparations at postnatal day 1.5 (P1.5). Axons either coursed directly to and terminated specifically within a glomerulus, branched before terminating in a glomerulus, bypassed glomeruli and entered the underlying external plexiform layer, passed through the glomerular layer with side branches into glomeruli, or branched into more than one glomerulus. HRP-labelled axon arbors from eight postnatal ages were reconstructed by camera lucida and were used to determine arbor length, arbor area, and arbor branch number. Whereas primary olfactory axons display errors in laminar targeting in the mammalian olfactory bulb, axon arbors typically achieve their adult morphology without exuberant growth. Many olfactory axons appear not to recognize appropriate cues to terminate within the glomerular layer during the early postnatal period. However, primary olfactory axons exhibit precise targeting in the glomerular layer after P5.5, indicating temporal differences in either the presence of guidance cues or the ability of axons to respond to these cues. (C) 1999 Wiley-Liss, Inc.
Resumo:
Background: The ornamental tobacco Nicotiana alata produces a series of proteinase inhibitors (Pls) that are derived from a 43 kDa precursor protein, NaProPl. NaProPl contains six highly homologous repeats that fold to generate six separate structural domains, each corresponding to one of the native Pls. An unusual feature of NaProPl is that the structural domains lie across adjacent repeats and that the sixth Pl domain is generated from fragments of the first and sixth repeats. Although the homology of the repeats suggests that they may have arisen from gene duplication, the observed folding does not appear to support this. This study of the solution structure of a single NaProPl repeat (aPl1) forms a basis for unravelling the mechanism by which this protein may have evolved, Results: The three-dimensional structure of aPl1 closely resembles the triple-stranded antiparallel beta sheet observed in each of the native Pls. The five-residue sequence Glu-Glu-Lys-Lys-Asn, which forms the linker between the six structural domains in NaProPl, exists as a disordered loop in aPl1. The presence of this loop in aPl1 results in a loss of the characteristically flat and disc-like topography of the native inhibitors. Conclusions: A single repeat from NaProPl is capable of folding into a compact globular domain that displays native-like Pl activity. Consequently, it is possible that a similar single-domain inhibitor represents the ancestral protein from which NaProPl evolved.
Resumo:
In this paper we investigate the quantum and classical dynamics of a single trapped ion subject to nonlinear kicks derived from a periodic sequence of Gaussian laser pulses. We show that the classical system exhibits: diffusive growth in the energy, or heating,'' while quantum mechanics suppresses this heating. This system may be realized in current single trapped-ion experiments with the addition of near-field optics to introduce tightly focused laser pulses into the trap.
Resumo:
We present a method for measuring single spins embedded in a solid by probing two-electron systems with a single-electron transistor (SET). Restrictions imposed by the Pauli principle on allowed two-electron states mean that the spin state of such systems has a profound impact on the orbital states (positions) of the electrons, a parameter which SET's are extremely well suited to measure. We focus on a particular system capable of being fabricated with current technology: a Te double donor in Si adjacent to a Si/SiO2, interface and lying directly beneath the SET island electrode, and we outline a measurement strategy capable of resolving single-electron and nuclear spins in this system. We discuss the limitations of the measurement imposed by spin scattering arising from fluctuations emanating from the SET and from lattice phonons. We conclude that measurement of single spins, a necessary requirement for several proposed quantum computer architectures, is feasible in Si using this strategy.
Resumo:
A mathematical model is presented that describes a system where two consumer species compete exploitatively for a single renewable resource. The resource is distributed in a patchy but homogeneous environment; that is, all patches are intrinsically identical. The two consumer species are referred to as diggers and grazers, where diggers deplete the resource within a patch to lower densities than grazers. We show that the two distinct feeding strategies can produce a heterogeneous resource distribution that enables their coexistence. Coexistence requires that grazers must either move faster than diggers between patches or convert the resources to population growth much more efficiently than diggers. The model shows that the functional form of resource renewal within a patch is also important for coexistence. These results contrast with theory that considers exploitation competition for a single resource when the resource is assumed to be well mixed throughout the system.
Resumo:
We have previously shown that exposing rats to a relatively high dose of ethanol during early postnatal life resulted in a deficit in spatial learning ability. This ability is controlled, at least in part, by the hippocampal formation. The purpose of the present study was to determine whether exposure of rats to ethanol during early postnatal life affected the number of specific neurons in the hippocampus. Wistar rats were exposed to a relatively high daily dose of ethanol between postnatal days 10 and 15 by placing them for 3 h each day in a chamber containing ethanol vapor. The blood ethanol concentration was about 430 mg/dl at the end of the exposure period. Groups of ethanol-treated (ET) rats, separation controls (SC), and mother-reared controls (MRC) were anesthetized and killed at 16 days of age by perfusion with phosphate-buffered glutaraldehyde (2.5%). The Cavalieri principle was used to determine the volume of various subdivisions of the hippocampal formation (CA1, CA2+CA3, hilus, and granule cell layer), and the physical disector method was used to estimate the numerical densities of neurons within each subdivision. The total number of neurons was calculated by multiplying estimates of the numerical density with the volume. There were, on average, about 441,000 granule cells in the granule cell layer and 153,000 to 177,000 pyramidal cells in both the CA1 and CA2+CA3 regions in all three treatment groups. In the hilus region, ET rats had about 27,000 neuronal cells. This was significantly fewer than the average of 38,000 such neurons estimated to be present in both MRC and SC animals. Thus, neurons in the hilus region may be particularly vulnerable to the effects of a high dose of ethanol exposure during early postnatal life. (C) 2000 Wiley-Liss, Inc.
Resumo:
We propose a single optical photon source for quantum cryptography based on the acoustoelectric effect. Surface acoustic waves (SAWs) propagating through a quasi-one-dimensional channel have been shown to produce packets of electrons that reside in the SAW minima and travel at the velocity of sound. In our scheme, the electron packets are injected into a p-type region, resulting in photon emission. Since the number of electrons in each packet can be controlled down to a single electron, a stream of single- (or N-) photon states, with a creation time strongly correlated with the driving acoustic field, should be generated.
Resumo:
Objective: To pilot a single-patient trials (SPTs) service in general practice, designed to improve decision-making about long-term medications for chronic conditions. Design: 12-week within-patient, randomised, double-blind, placebo-controlled, crossover comparison of ibuprofen with paracetamol for osteoarthritis, involving three pairs of two-week treatment periods for each participating patient. Setting and patients: Patients attending an academic general practice with a clinical diagnosis of osteoarthritis, with pain of at least a month's duration severe enough to warrant consideration of long-term non-steroidal anti-inflammatory drug (NSAID) use. Main outcome measures: Pain and stiffness; measures of overall arthritis compared with previous fortnight; preference for NSAID at the end of each two-week treatment period; use of escape analgesia; side effects; and management changes as a result of the SPTs. Results: Eight of 14 patients completed SPTs. One was a clear responder to NSAIDs, five were non-responders, and two were indefinite. Of the five who were using NSAIDs before the SPT, two continued and three ceased using them. Clinically useful information assisted decision-making for all eight participants. Medication management changed for six. Conclusions: Single-patient trials can be successfully implemented in general practice and might be a valuable method for GPs to identify patients who respond to medication for chronic stable conditions such as osteoarthritis, in which individual response to medication is variable.