54 resultados para Ring-Down


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Grobner bases have been generalised to polynomials over a commutative ring A in several ways. Here we focus on strong Grobner bases, also known as D-bases. Several authors have shown that strong Grobner bases can be effectively constructed over a principal ideal domain. We show that this extends to any principal ideal ring. We characterise Grobner bases and strong Grobner bases when A is a principal ideal ring. We also give algorithms for computing Grobner bases and strong Grobner bases which generalise known algorithms to principal ideal rings. In particular, we give an algorithm for computing a strong Grobner basis over a finite-chain ring, for example a Galois ring.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although earlier studies on thiamine deficiency have reported increases in extracellular glutamate concentration in the thalamus, a vulnerable region of the brain in this disorder, the mechanism by which this occurs has remained unresolved. Treatment with pyrithiamine, a central thiamine antagonist, resulted in a 71 and 55% decrease in protein levels of the astrocyte glutamate transporters GLT-1 and GLAST, respectively, by immunoblotting in the medial thalamus of day 14 symptomatic rats at loss of righting reflexes. These changes occurred prior to the onset of convulsions and pannecrosis. Loss of both GLT-1 and GLAST transporter sites was also confirmed in this region of the thalamus at the symptomatic stage using immunohistochemical methods. In contrast, no change in either transporter protein was detected in the non-vulnerable frontal parietal cortex. These effects are selective; protein levels of the astrocyte GABA transporter GAT-3 were unaffected in the medial thalamus. In addition, astrocyte-specific glial fibrillary acidic protein (GFAP) content was unchanged in this brain region, suggesting that astrocytes are spared in this disorder. Loss of GLT-1 or GLAST protein was not observed on day 12 of treatment, indicating that down-regulation of these transporters occurs within 48 h prior to loss of righting reflexes. Finally, GLT-1 content was positively correlated with levels of the neurofilament protein alpha -internexin, suggesting that early neuronal drop-out may contribute to the down-regulation of this glutamate transporter and subsequent pannecrosis. A selective, focal loss of GLT-1 and GLAST transporter proteins provides a rational explanation for the increase in interstitial glutamate levels, and may play a major role in the selective vulnerability of thalamic structures to thiamine deficiency-induced cell death.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nervous system of temnocephalid flatworms consists of the brain and three pairs of longitudinal connectives extending into the trunk and tail. The connectives are crosslinked by an invariant number of regularly spaced commissures. Branches of the connectives innervate the tentacles of the head and the sucker organ in the tail. A set of nerve rings encircling the pharynx and connected to the brain and connectives constitute the pharyngeal nervous system. The nervous system is formed during early embryogenesis when the embryo represents a multilayered mesenchymal mass of cells. Gastrulation and the formation of separate epithelial germ layers that characterize most other animal groups are absent. The brain arises as a bilaterally symmetric condensation of postmitotic cells in the deep layers of the anterior region of the embryonic mesenchyme. The pattern of axon outgrowth, visualized by labeling with anti-acetylated tubulin (acTub) antibody, shows marked differences from the pattern observed in other flatworm taxa. in regard to the number of neurons that express the acTub epitope. Acetylated tubulin is only expressed in neurons that form long axon tracts. In other flatworm species, such as the typhloplanoid Mesostoma and the polyclad Imogine, which were investigated by us with the acTub antibody (Hartenstein and Ehlers [2000] Dev. Genes Evol. 210:399-415; Younossi-Hartenstein and Hartenstein [2000] Dev. Genes Evol. 210:383-398), only a small number of pioneer neurons become acTub positive during the embryonic period. By contrast, in temnocephalids, most, if not all, neurons express acTub and form long, large-diameter axons. Initially, the brain commissure, pharyngeal nerve ring, and the connectives are laid down. Commissural tracts and tentacle nerves branching off the connectives appear later. We speculate that the precocious differentiation of the nervous system may be related to the fact that temnocephalids move by muscle action, and possess a massive and complex muscular system when they hatch. In addition, they have muscular specializations such as the anterior tentacles and the posterior sucker that are used as soon as they hatch. By contrast, juveniles of Mesostoma and larvae of polyclads move predominantly by ciliary action that may not require a complex neural circuitry for coordination. (C) 2001 Wiley-Liss, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Treatment of human cancers with an inherent antigen-processing defect due to a loss of peptide transporters (TAP-1 and TAP-2) and/or MHC class I antigen expression remains a considerable challenge. There is now an increasing realization that tumor cells with down-regulated expression of TAP and/or MHC class I antigens display strong resistance to cytotoxic T lymphocyte (CTL)mediated immune control, and often fail to respond to the conventional immunotherapeutic protocols based on active immunization with tumor-associated epitopes (TAE) or adoptive transfer of tumor-specific T cells, In the present study, we describe a novel approach based on immunization with either genetically modified tumor cells or naked DNA vectors encoding TAE fused to an endoplasmic reticulum (ER) signal sequence (ER-TAE) which affords protection against challenge by melanoma cells with down-regulated expression of TAP-1/2 and MHC class I antigens. In contrast, animals immunized with a vaccine based on TAE alone showed no protection against tumor challenge. Although MHC-peptide tetramer analysis showed a similar frequency of antigen-specific CTL in both ER-TAE- and TAE-immunized mice, functional analysis revealed that CTL activated following immunization with ER-TAE displayed significantly higher avidity for TAE when compared to animals immunized with the TAE alone, These observations provide a new strategy in anti-cancer vaccine design that allows activation of a highly effective and well-defined CTL response against tumors with down-regulated expression of TAP and MHC class I antigens.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The internal flexibility of the central seven-membered ring of a series of tricyclic antidepressant drugs (TCAs), imipramine {l}, amitriptyline {2}, doxepin {3}, and dothiepin {4}, has been investigated by H-1 and C-13 nuclear magnetic (NMR) techniques. Two dynamic processes were examined: ring inversion and bridge flexing. H-1 NMR lineshape analysis was used to obtain ring inversion barriers for 2-4. These studies yielded energy barriers of 14.3, 16.7, and 15.7 +/- 0.6 kcal/mol for the hydrochloride salts of doxepin, dothiepin, and amitriptyline, respectively. The barriers for the corresponding free bases were lower by 0.6 kcal/mol on average. (CT1)-C-13 relaxation measurements were used to determine the degree of bridge flexing associated with the central seven-membered ring for all four compounds. By fitting the T-1 data to a two-state jump model, lifetimes and amplitudes of rapid bridge flexing motions were determined. The results show that imipramine has the fastest rate of bridge flexing, followed by amitriptyline, doxepin, and dothiepin. The pharmacological profiles of the TCAs are complex and they interact with many receptor sites, resulting in numerous side effects and a general lack of understanding of their precise mode of action in different anxiety-related disorders. They all have similar three-dimensional structures, which makes it difficult to rationalize their differing relative potency in different assays/clinical settings. However, the clear finding here that there are significantly different degrees of internal mobility suggests that molecular dynamics should be an additional factor considered when trying to understand the mode of action of this clinically important family of molecules. (C) 2001 Wiley-Liss, Inc. and the American Pharmaceutical Association J Pharm Sci 90:713-721, 2001.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to determine the extent to which adults with Down syndrome (DS) are able to utilise advance information to prepare reach to grasp movements. The study comprised ten adults with DS; ten children matched to an individual in the group with DS on the basis of their intellectual ability, and twelve adult controls. The participants used their right hand to reach out and grasp illuminated perspex blocks. Four target blocks were positioned on a table surface, two to each side of the midsagittal plane. In the complete precue condition, participants were provided with information specifying the location of the target. In the partial precue condition, participants were given advance information indicating the location of the object relative to the midsagittal plane (left or right). In the null condition, advance information concerning the position of the target object was entirely ambiguous. It was found that both reaction times and movement times were greater for the participants with DS than for the adults without DS. The reaction times exhibited by individuals with DS in the complete precue condition were lower than those observed in the null condition, indicating that they had utilised advance information to prepare their movements. In the group with DS, when advance information specified only the location of the target object relative to the midline, reaction times were equivalent to those obtained when ambiguous information was given. In contrast, the adults without DS exhibited reaction times that were lower in both the complete and partial precue conditions when compared to the null condition. The pattern of results exhibited by the children was similar to that of the adults without DS. The movement times exhibited by all groups were not influenced by the precue condition. In summary, our findings indicate that individuals with DS are able to use advance information if it specifies precisely the location of the target object in order to prepare a reach to grasp movement. The group with DS were unable, however, to obtain the normal advantage of advance information specifying only one dimension of the movement goal (i.e., the position of an object relative to the body midline). (C) 2001 Elsevier Science B.V. All rights reserved.