19 resultados para Reflective light microscopy
Resumo:
Purpose: We conducted a noncomparative, retrospective chart review of 45 patients and 51 eyelids with the diagnosis of involutional entropion or ectropion that underwent full-thickness lower eyelid shortening between June 2001 and February 2004, in whom the severity of actinic damage was analyzed in relation to the eyelid position. Patients with any different surgical approach or other primary causes of abnormal eyelid position, such as paralytic, congenital, or mechanical factors, were excluded. Methods: After excision, all eyelid specimens were examined by a single anatomic pathologist, who was masked to the type of eyelid malposition. The extent of dermal actinic change was evaluated under light microscopy, according to a previously validated grading system. Results: Fifty-one eyelids from 26 male and 19 female patients were analyzed. The mean age at the surgery was 76 +/- 10 years (range, 52 to 92 years), affecting one side in 39 cases and both sides in 6 cases. The most frequent eyelid malposition was ectropion, which affected two thirds of the cases (35 eyelids). Half of the patients presented with mild actinic skin changes; however, the severity of the histologic skin actinic changes was significantly worse in patients with ectropion in comparison to those with entropion (p < 0.0001). Conclusions: Actinic damage affecting the anterior lamella of the lower eyelid contributes as an additional factor in final eyelid position in patients with involutional eyelid changes. More severe and extensive actinic changes were present in eyelids with ectropion.
Resumo:
Body parts that can reflect highly polarized light have been found in several species of stomatopod crustaceans (mantis shrimps). These polarized light reflectors can be grossly divided into two major types. The first type, usually red or pink in color to the human visual system, is located within an animal’s cuticle. Reflectors of the second type, showing iridescent blue, are located beneath the exoskeleton and thus are unaffected by the molt cycle. We used reflection spectropolarimetry and transmission electron microscopy (TEM) to study the reflective properties and the structures that reflect highly polarized light in stomatopods. For the first type of reflector, the degree of polarization usually changes dramatically, from less than 20% to over 70%, with a change in viewing angle. TEM examination indicates that the polarization reflection is generated by multilayer thin-film interference. The second type of reflector, the blue colored ones, reflects highly polarized light to all viewing angles. However, these reflectors show a slight chromatic change with different viewing angles. TEM sections have revealed that streams of oval-shaped vesicles might be responsible for the production of the polarized light reflection. In all the reflectors we have examined so far, the reflected light is always maximally polarized at around 500 nm, which is close to the wavelength best transmitted by sea water. This suggests that the polarized light reflectors found in stomatopods are well adapted to the underwater environment. We also found that most reflectors produce polarized light with a horizontal e-vector. How these polarized light reflectors are used in stomatopod signaling remains unknown.
Resumo:
We report on a new experimental technique suitable for measurement of light-activated processes, such as fluorophore transport. The usefulness of this technique is derived from its capacity to decouple the imaging and activation processes, allowing fluorescent imaging of fluorophore transport at a convenient activation wavelength. We demonstrate the efficiency of this new technique in determination of the action spectrum of the light mediated transport of rhodamine 123 into the parasitic protozoan Giardia duodenalis. (c) 2006 Society of Photo-Optical Instrumentation Engineers.
Resumo:
Iodine-doped (I-doped) mesoporous titania with a bicrystalline (anatase and rutile) framework was synthesized by a two-step template hydrothermal synthesis route. I-doped titania with anatase structure was also synthesized without the use of a block copolymer as a template. The resultant titania samples were characterized by X-ray diffraction, Raman spectroscopy, Fourier transform infrared, nitrogen adsorption, transmission electron microscopy, X-ray photoelectron spectroscopy, and UV-visible absorption spectroscopy. Both I-doped titania samples, with and without template, show much better photocatalytic activity than commercial P25 titania in the photodegradation of methylene blue under the irradiation of visible light (> 420 nm) and UV-visible light. Furthermore, I-doped mesoporous titania with a bicrystalline framework exhibits better activity than I-doped titania with anatase structure. The effect of rutile phase in titania on the adsorptive capacity of water and surface hydroxyl, and photocatalytic activity was investigated in detail. The excellent performance of I-doped mesoporous titania under both visible light and UV-visible light can be attributed to the combined effects of bicrystalline framework, high crystallinity, large surface area, mesoporous structure, and high visible light absorption induced by I-doping.