34 resultados para Reeducación postural
Resumo:
During voluntary arm movements, the medial back muscles are differentially active. It is not known whether differential activity also occurs when the trunk is perturbed unpredictably, when the earliest responses are initiated by short-latency spinal mechanisms rather than voluntary commands. To assess this, in unpredictable and self-initiated conditions, a weight was dropped into a bucket that was held by the standing subject (n = 7). EMG activity was recorded from the deep (Deep MF), superficial (Sup MF) and lateral (Lat MF) lumbar multifidus, the thoracic erector spinae (ES) and the biceps brachii. With unpredictable perturbations, EMG activity was first noted in the biceps brachii, then the thoracic ES, followed synchronously in the components of the multifidus. During self-initiated perturbations, background EMG in the Deep MF increased two- to threefold, and the latency of the loading response decreased in six out of the seven subjects. In Sup MF and Lat MF, this increase in background EMG was not observed, and the latency of the loading response was increased. Short-latency reflex mechanisms do not cause differential action of the medial back muscles when the trunk is loaded. However, during voluntary tasks the central nervous system exerts a 'tuned response', which involves discrete activity in the deep and superficial components of the medial lumbar muscles in a way that varies according to the biomechanical action of the muscle component.
Resumo:
Study Design. Cross-sectional study of electromyographic onsets of trunk and hip muscles in subjects with a clinical diagnosis of sacroiliac joint pain and matched control subjects. Objectives. To determine whether muscle activation of the supporting leg was different between control subjects and subjects with sacroiliac joint pain during hip flexion in standing. Background. Activation of the trunk and gluteal muscles stabilize the pelvis for load transference; however, the temporal pattern of muscle activation and the effect of pelvic pain on temporal parameters has not been investigated. Methods. Fourteen men with a clinical diagnosis of sacroiliac joint pain and healthy age-matched control subjects were studied. Surface electromyographic activity was recorded from seven trunk and hip muscles of the supporting leg during hip flexion in standing. Onset of muscle activity relative to initiation of the task was compared between groups and between limbs. Results. The onset of obliquus internus abdominis (OI) and multifidus occurred before initiation of weight transfer in the control subjects. the onset of obliquus internus abdominis, multifidus, and gluteus maximus was delayed on the symptomatic side in subjects with sacroiliac joint pain compared with control subjects, and the onset of biceps femoris electromyographic activity was earlier. IN addition, electromyographic onsets were different between the symptomatic and asymptomatic sides in subjects with sacroiliac joint pain. Conclusions. The delayed onset of obliquus internus abdominis, multifidus, and gluteus maximus electromyographic activity of the supporting leg during hip flexion, in subjects with sacroiliac joint pain. suggests an alteration in the strategy for lumbopelvic stabilization that may disrupt load transference through the pelvis.
Resumo:
The objective of this study was to compare onset of deep and superficial cervical flexor muscle activity during rapid, unilateral arm movements between ten patients with chronic neck pain and 12 control subjects. Deep cervical flexor (DCF) electromyographic activity (EMG) was recorded with custom electrodes inserted via the nose and fixed by suction to the posterior mucosa of the oropharynx. Surface electrodes were placed over the sternocleidomastoid (SCM) and anterior scalene (AS) muscles. While standing, subjects flexed and extended the right arm in response to a visual stimulus. For the control group, activation of DCF, SCM and AS muscles occurred less than 50 ms after the onset of deltoid activity, which is consistent with feedforward control of the neck during arm flexion and extension. When subjects with a history of neck pain flexed the arm, the onsets of DCF and contralateral SCM and AS muscles were significantly delayed (p<0.05). It is concluded that the delay in neck muscle activity associated with movement of the arm in patients with neck pain indicates a significant deficit in the automatic feedforward control of the cervical spine. As the deep cervical muscles are fundamentally important for support of the cervical lordosis and the cervical joints, change in the feedforward response may leave the cervical spine vulnerable to reactive forces from arm movement.
Resumo:
OBJECTIVES: To determine normal values for four commonly used clinical functional balance tests from community-dwelling women aged 20 to 80 and to identify any significant decline due to aging. DESIGN: A cross-sectional study was undertaken to provide normative values for four clinical balance tests across 6 decade cohorts. SETTING: The Betty Byrne-Henderson Center for Women and Aging, Royal Womens' Hospital, Brisbane, Australia. PARTICIPANTS: Four hundred fifty-six community-dwelling, independently ambulant women with no obvious neurological or musculoskeletal-related disability, aged 20 to 80, were randomly recruited from a large metropolitan region. MEASUREMENTS: The clinical balance measures/tests were the Timed Up and Go test, step test, Functional Reach test, and lateral reach test. Multivariate analysis was used to test the effect for age, height, and activity level. RESULTS: Normal data were produced for each test across each decade cohort. Gradual decline in balance performance was confirmed, with significant effect for age demonstrated. CONCLUSION: New normative data across the adult age decades are available for these clinical tests. Use of clinical balance tests could complement other balance tests and be used to screen women aged 40 to 60 whose performance is outside the normal values for age and to decrease later falls risk.
Resumo:
Primary Objective: To document the clinical characteristics of acute dysphagia in a group of pediatric patients after traumatic brain injury (TBI). Research Design: Prospective group study. Methods: Fourteen subjects (7 males, 7 females), aged 4 years 1 month to 15 years, with moderate or severe TBI (Glasgow Coma Scale [GCS] < 12). Subjects were assessed via clinical bedside examination documenting cognitive status, oromotor function, feeding function, dietary recommendations, and an indication of overall feeding severity Results: A pattern of impaired cognition, altered behavior related to feeding, severe tonal and postural deficits, oromotor, respiratory, and laryngeal impairments, and oral sensitivity issues was revealed. Conclusions: Swallowing impairment was affected by multilevel deficits, which both individually and in combination had a negative impact on swallowing competence and safety. In light of deficits identified, which could not be observed on videofluoroscopic investigation alone, this study highlighted the importance of the clinical bedside examination in assessing dysphagia in pediatric patients post-TBI for identifying targets for intervention.
Resumo:
Study Design. Quiet stance on supporting bases with different lengths and with different visual inputs were tested in 24 study participants with chronic low back pain (LBP) and 24 matched control subjects. Objectives. To evaluate postural adjustment strategies and visual dependence associated with LBP. Summary of Background Data. Various studies have identified balance impairments in patients with chronic LBP, with many possible causes suggested. Recent evidence indicates that study participants with LBP have impaired trunk muscle control, which may compromise the control of trunk and hip movement during postural adjustments ( e. g., hip strategy). As balance on a short base emphasizes the utilization of the hip strategy for balance control, we hypothesized that patients with LBP might have difficulties standing on short bases. Methods. Subjects stood on either flat surface or short base with different visual inputs. A task was counted as successful if balance was maintained for 70 seconds during bilateral stance and 30 seconds during unilateral stance. The number of successful tasks, horizontal shear force, and center-of-pressure motion were evaluated. Results. The hip strategy was reduced with increased visual dependence in study participants with LBP. The failure rate was more than 4 times that of the controls in the bilateral standing task on short base with eyes closed. Analysis of center-of-pressure motion also showed that they have inability to initiate and control a hip strategy. Conclusions. The inability to control a hip strategy indicates a deficit of postural control and is hypothesized to result from altered muscle control and proprioceptive impairment.
Resumo:
Attention difficulties and poor balance are both common sequel following a brain injury. This study aimed to determine whether brain injured adults had greater difficulty than controls in performing a basic balance task while concurrently completing several different cognitive tasks varying in visuo-spatial attentional load and complexity. Twenty brain injured adults and 20 age-, sex- and education level-matched controls performed a balance-only task (step stance held for 30s), five cognitive-only tasks (simple and complex non-spatial, visuo-spatial, and a control articulation task), and both together (dual tasks). Brain injured adults showed a greater centre of pressure (COP) excursion and velocity in all conditions than controls. Brain injured adults also demonstrated greater interference with balance when concurrently performing two cognitive tasks than control subjects. These were the control articulation and the simple non-spatial task. It is likely that distractibility during these simple tasks contributed to an increase in COP motion and interference with postural stability in stance. Performing visuo-spatial tasks concurrently with the balance task did not result in any change in COP motion. Dual task interference in this group is thus unlikely to be due to structural interference. Similarly, as the more complex tasks did not uniformly result in increased interference, a reduction in attentional capacity in the brain injured population is unlikely to be the primary cause of dual task interference in this group. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
A complex response of the trunk muscles occurs to restore equilibrium in response to movement of the support surface. Intra-abdominal pressure (IAP) is considered to contribute to control of the trunk. This study investigated the contribution of IAP to the postural response to multidirection support-surface translation. IAP was recorded with a thin-film pressure transducer inserted via the nose into the stomach and trunk motion was recorded with an optoelectronic system with markers over the spinous process of L1. A pattern of trunk movement was recorded in response to the support-surface translations that was consistent with a 'hip' strategy of postural control. The trunk moved in a manner appropriate to move the centre of gravity over the new base of support. IAP was increased with movement in each direction, but varied in timing and amplitude between translation directions. In general, the IAP was greater with translations in the sagittal plane compared to the frontal plane and was initiated earlier for translations in the backward direction. These data indicate that IAP contributes to the postural response associated with support-surface translation and suggest that this is consistent with stiffening the spine. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Objective: To assess the effect of reduced skin exposure in preterm infants receiving overhead phototherapy treatment on total serum bilirubin (TSB). Methods: Randomized controlled trial. Preterm infants (>1500 g birthweight and less than or equal to 36 weeks gestation) were randomized to being nursed either partially clothed with only disposable nappies and in posturally supported positions (n = 30) or naked without postural support (n = 29). Primary outcome was mean TSB percentage change at 24 h of completed conventional overhead phototherapy treatment (irradiance of 6 muWcm(-2)/nm at a wavelength of 425-475 nm). The incidence of rebound jaundice, number of infants continuing to receive phototherapy treatment at 24 h periods, parental stress, mother-infant interaction and mean TSB percentage change at 24 h of completed conventional overhead phototherapy treatment were examined. Results: Mean TSB percentage change at 24 h of completed treatment for the partially clothed group was 15.4% (+/-18) and for the naked group 19% (+/-15) (mean difference 3.6% 95% CI -5.1, 12.3). No other outcomes were significantly affected by reduced skin exposure to overhead phototherapy treatment. Conclusion: Our results show no statistically significant difference in TSB level change using either nursing practice.
Resumo:
The present study investigated body position effects on transient evoked otoacoustic emission (TEOAE) recordings of clinical significance. Sixty adults (30 males, 30 females) were assessed using the Otodynamics ILO88 Analyzer in three positions (sitting, supine, and side-lying). Results indicated significant positional effects on the TEOAE parameters of A-B difference, noise, whole wave reproducibility, and response levels. These differences included higher noise levels in supine and side-lying positions in comparison to the upright sitting position. Lower whole wave reproducibility measurements, and higher response amplitudes, in the side-lying position compared with supine and seated positions were also observed. No significant effects were evident for signal-to-noise ratio or band reproducibility. Given the lack of significant body position effects on these latter parameters and the infrequent clinical use of the other parameters in isolation, there was no evidence to suggest the future need for major review of current pass/fail criteria or of the standard test protocol.
Resumo:
This article presents the proceedings of a symposium held at the meeting of the International Society for Biomedical Research on Alcoholism (ISBRA) in Mannheim, Germany, in October, 2004. Chronic alcoholism follows a fluctuating course, which provides a naturalistic experiment in vulnerability, resilience, and recovery of human neural systems in response to presence, absence, and history of the neurotoxic effects of alcoholism. Alcohol dependence is a progressive chronic disease that is associated with changes in neuroanatomy, neurophysiology, neural gene expression, psychology, and behavior. Specifically, alcohol dependence is characterized by a neuropsychological profile of mild to moderate impairment in executive functions, visuospatial abilities, and postural stability, together with relative sparing of declarative memory, language skills, and primary motor and perceptual abilities. Recovery from alcoholism is associated with a partial reversal of CNS deficits that occur in alcoholism. The reversal of deficits during recovery from alcoholism indicates that brain structure is capable of repair and restructuring in response to insult in adulthood. Indirect support of this repair model derives from studies of selective neuropsychological processes, structural and functional neuroimaging studies, and preclinical studies on degeneration and regeneration during the development of alcohol dependence and recovery from dependence. Genetics and brain regional specificity contribute to unique changes in neuropsychology and neuroanatomy in alcoholism and recovery. This symposium includes state-of-the-art presentations on changes that occur during active alcoholism as well as those that may occur during recovery-abstinence from alcohol dependence. Included are human neuroimaging and neuropsychological assessments, changes in human brain gene expression, allelic combinations of genes associated with alcohol dependence and preclinical studies investigating mechanisms of alcohol induced neurotoxicity, and neuroprogenetor cell expansion during recovery from alcohol dependence.
Resumo:
Anterior knee pain (AKP) is common and has been argued to be related to poor patellofemoral joint control due to impaired coordination of the vasti muscles. However, there are conflicting data. Changes in motor unit firing may provide more definitive evidence. Synchronization of motor unit action potentials (MUAPs) in vastus medialis obliquus (VMO) and vastus lateralis (VL) may contribute to coordination in patellofemoral joint control. We hypothesized that synchronization may be reduced in AKP. Recordings of single MUAPs were made from VMO and multiunit electromyograph (EMG) recordings were made from VL. Averages of VL EMG recordings were triggered from the single MUAPs in VMO. Motor units in VL firing in association with the VMO motor units would appear as a peak in the VL EMG average. Data were compared to previous normative data. The proportion of trials in which a peak was identified in the triggered averages of VL EMG was reduced in people with AKP (38%) compared to controls (90%). Notably, although 80% of subjects had values less than controls, 20% were within normal limits. These results provide new evidence that motor unit synchronization is modified in the presence of pain and provide evidence for motor control dysfunction in AKP. Perspective: This study shows that coordination of motor units between the medial and lateral vasti muscles in people with anterior knee pain is reduced compared to people without knee pain. It confirms that motor control dysfunction is a factor in this condition and has implications for selection of rehabilitation strategies. (c) 2005 by the American Pain Society.