111 resultados para RNA secondary structure


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The omega-conotoxins are a set of structurally related, four-loop, six cysteine containing peptides, that have a range of selectivities for different subtypes of the voltage-sensitive calcium channel (VSCC). To investigate the basis of the selectivity displayed by these peptides, we have studied the binding affinities of two naturally occurring omega-conotoxins, MVIIA and MVIIC and a series of 14 MVIIA/MVIIC loop hybrids using radioligand binding assays for N and P/Q-type Ca2+ channels in rat brain tissue. A selectivity profile was developed from the ratio of relative potencies at N-type VSCCs (using [I-125]GVIA radioligand binding assays) and P/Q-type VSCCs (using [I-125]MVIIC radioligand binding assays). in these peptides, loops 2 and 4 make the greatest contribution to VSCC subtype selectivity, while the effects of loops 1 and 3 are negligible. Peptides with homogenous combinations of loop 2 and 4 display clear selectivity preferences, while those with heterogeneous combinations of loops 2 and 4 are less discriminatory. H-1 NMR spectroscopy revealed that the global folds of MVIIA, MVIIC and the 14 loop hybrid peptides were similar; however, several differences in local structure were identified. Based on the binding data and the 3D structures of MVIIA, GVIA and MVIIC, we have developed a preliminary pharmacophore based on the omega-conotoxin residues most Likely to interact with the N-type VSCC. (C) 1999 Academic Press.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The three-dimensional solution structure of conotoxin TVIIA, a 30-residue polypeptide from the venom of the piscivorous cone snail Conus tulipa, has been determined using 2D H-1 NMR spectroscopy. TVIIA contains six cysteine residues which form a 'four-loop' structural framework common to many peptides from Conus venoms including the omega-, delta-, kappa-, and mu O-conotoxins. However, TVIIA does not belong to these well-characterized pharmacological classes of conotoxins, but displays high sequence identity with conotoxin GS, a muscle sodium channel blocker from Conus geographus. Structure calculations were based on 562 interproton distance restraints inferred from NOE data, together with 18 backbone and nine side-chain torsion angle restraints derived from spin-spin coupling constants. The final family of 20 structures had mean pairwise rms differences over residues 2-27 of 0.18 +/- 0.05 Angstrom for the backbone atoms and 1.39 +/- 0.33 Angstrom for all heavy atoms. The structure consists of a triple-stranded, antiparallel beta sheet with +2x, -1 topology (residues 7-9, 16-20 and 23-27) and several beta turns. The core of the molecule is formed by three disulfide bonds which form a cystine knot motif common to many toxic and inhibitory polypeptides. The global fold, molecular shape and distribution of amino-acid sidechains in TVIIA is similar to that previously reported for conotoxin GS, and comparison with other four-loop conotoxin structures provides further indication that TVIIA and GS represent a new and distinct subgroup of this structural family. The structure of TVIIA determined in this study provides the basis for determining a structure-activity relationship for these molecules and their interaction with target receptors.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Scale insects (Hemiptera: Sternorrhyncha: Coccoidea) are a speciose and morphologically specialized group of plant-feeding bugs in which evolutionary relationships and thus higher classification are controversial. Sequences derived from nuclear small-subunit ribosomal DNA were used to generate a preliminary molecular phylogeny for the Coccoidea based on 39 species representing 14 putative families. Monophyly of the archaeococcoids (comprising Ortheziidae, Margarodidae sensu lato, and Phenacoleachia) was equivocal, whereas monophyly of the neococcoids was supported. Putoidae, represented by Puto yuccae, was found to be outside the remainder of the neococcoid clade. These data are consistent with a single origin (in the ancestor of the neococcoid clade) of a chromosome system involving paternal genome elimination in males. Pseudococcidae (mealybugs) appear to be sister to the rest of the neococcoids and there are indications that Coccidae (soft scales) and Kerriidae (lac scales) are sister taxa. The Eriococcidae (felt scales) was not recovered as a monophyletic group and the eriococcid genus Eriococcus sensu lato was polyphyletic. (C) 2002 Elsevier Science (USA). All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The chi-conopeptides MrIA and MrIB are 13-residue peptides with two disulfide bonds that inhibit human and rat norepinephrine transporter systems and are of significant interest for the design of novel drugs involved in pain treatment. In the current study we have determined the solution structure of MrIA using NMR spectroscopy. The major element of secondary structure is a hairpin with the two strands connected by an inverse gamma-turn. The residues primarily involved in activity have previously been shown to be located in the turn region (Sharpe, I. A.; Palant, E.: Schroder, C. L; Kaye, D. M.; Adams, D. I.; Alewood, P. F.; Lewis, R. J. J Biol Client 2003, 278, 40317-40323), which appears to be more flexible than the beta-strands based on disorder in the ensemble of calculated structures. Analogues of MrIA with N-terminal truncations indicate that the N-terminal residues play a role in defining a stable conformation and the native disulfide connectivity. In particular, noncovalent interactions between Val3 and Hypl2 are likely to be involved in maintaining a stable conformation. The N-terminus also affects activity, as a single N-terminal deletion introduced additional pharmacology at rat vas deferens, while deleting the first two amino acids reduced chi-conopeptide potency. This article was originally published online as an accepted preprint. The Published Online date corresponds to the preprint version. You can request a copy of the preprint by entailing the Biopolymers editorial office at biopolymers@wiley.com (c) 2005 Wiley Periodicals, Inc.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Until recently, West Nile (WN) and Kunjin (KUN) viruses were classified as distinct types in the Flavivirus genus. However, genetic and antigenic studies on isolates of these two viruses indicate that the relationship between them is more complex. To better define this relationship, we performed sequence analyses on 32 isolates of KUN virus and 28 isolates of WN virus from different geographic areas, including a WN isolate from the recent outbreak in New York. Sequence comparisons showed that the KUN virus isolates from Australia were tightly grouped but that the WN virus isolates exhibited substantial divergence and could be differentiated into four district groups. KUN virus isolates from Australia were antigenically homologous and distinct from the WN isolates and a Malaysian KUN virus. Our results suggest that KUN and WN viruses comprise a group of closely related viruses that can be differentiated into subgroups on the basis of genetic and antigenic analyses.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The three-dimensional solution structure of BSTI, a trypsin inhibitor from the European frog Bombina bombina, has been solved using H-1 NMR spectroscopy. The 60 amino acid protein contains five disulfide bonds, which were unambiguously determined to be Cvs (4-38), Cys (13-34), Cys (17-30), Cys (21-60), and Cys (40-54) by experimental restraints and subsequent structure calculations. The main elements of secondary structure are four beta -strands, arranged as two small antiparallel beta -sheets, The overall fold of BSTI is disk shaped and is characterized by the lack of a hydrophobic core. The presumed active site is located on a loop comprising residues 21-34, which is a relatively disordered region similar to that seen in many other protease inhibitors. However, the overall fold is different to other known protease inhibitors with the exception of a small family of inhibitors isolated from nematodes of the family Ascaris and recently also from the haemolymph of Apis mellifera. BSTI may thus be classified as a new member of this recently discovered family of protease inhibitors.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The complete nucleotide sequence of the mitochondrial (mt) DNA molecule of the liverfluke, Fasciola hepatica (phylum Platyhelminthes, class Trematoda, family Fasciolidae), was determined, It comprises 14462 bp, contains 12 protein-encoding, 2 ribosomal and 22 transfer RNA genes, and is the second complete flatworm (and the first trematode) mitochondrial sequence to be described in detail. All of the genes are transcribed from the same strand. Of the genes typically found in mitochondrial genomes of eumetazoans, only atp8 is absent. The nad4L and nad4 genes overlap by 40 nt. Most intergenic sequences are very short. Two larger non-coding regions are present. The longer one (817 nt) is located between trnG and cox3 and consists of 8 identical tandem repeats of 85 nt, rich in G and C, followed by 1 imperfect repeat. The shorter non-coding region (187 nt) exhibits no special features and is separated from the longer region by trnG. The gene arrangement resembles that of some other trematodes including the eastern Asian Schistosoma species (and cyclophyllidean cestode species) but it is strikingly different from that of the African schistosomes, represented by Schistosoma mansoni. The genetic code is as inferred previously for flatworms. Transfer RNA genes range in length from 58 to 70 nt, their products producing characteristic 'clover leaf' structures, except for tRNA(S-VON) and tRNA(S-AGN) lacking the DHU arm.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The effect of cyanocobalamin (CNCbl, vitamin 1312) on hepatitis C virus internal ribosome entry site (HCV IRES)-dependent initiation of translation was studied by ribosomal toeprinting and sucrose gradient centrifugation analysis. These results suggested that CNCbl did not inhibit HCV IRES-dependent translation by a competitive binding mechanism. CNCbl allowed 80 S elongation complex formation on the mRNA, but stalled the initiation at that point, effectively trapping the 80 S ribosomal complexes on the HCV TRES. CNCbl had no effect on cap-dependent mRNA, consistent with the known mRNA specificity of this translational inhibitor. To help elucidate the mechanism, comparative data were collected for the well-characterised translation inhibitors cycloheximide and 5'-guanylyl-imidophosphate, Although CNCbl stalled HCV IRES-dependent translation at approximately the same step in initiation as cycloheximide, the mechanisms of these two inhibitors are distinct. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We sequenced part of the mitochondrial 12S ribosomal RNA gene of 23 specimens of Sarcoptes scabiei from eight wombats, one dog and three humans. Twelve of the 326 nucleotide positions varied among these mites and there were nine haplotypes (sequences) that differed by 1-8 nucleotides. Phylogenetic analyses indicated that these mites were from two lineages: (1) mites from wombats from Victoria, Australia, and mites from the humans and dog from the Northern Territory, Australia (haplotypes 1-4, 9); and (2) mites from the humans and dog from the Northern Territory (haplotypes 5-8). Mites from the three different hosts (wombats, a dog and humans) had not diverged phylogenetically; rather, these mites had similar 12S sequences. Thus, we conclude that these mites from wombats, humans and a dog are closely related, and that they diverged from a common ancestor relatively recently. This conclusion is consistent with the argument that people and/or their dogs introduced to Australia the S. scabiei mites that infect wombats Australia. So, S. scabiei, which has been blamed for the extinction of populations of wombats in Australia, may be a parasitic mite that was introduced to Australia with people and/or their dogs. These data show that the mitochondrial 12S rRNA gene may be a suitable population marker of S. scabiei from wombats, dogs and humans in Australia.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

NMR spectroscopy and simulated annealing calculations have been used to determine the three-dimensional structure of NaD1, a novel antifungal and insecticidal protein isolated from the flowers of Nicotiana alata. NaD1 is a basic, cysteine-rich protein of 47 residues and is the first example of a plant defensin from flowers to be characterized structurally. Its three-dimensional structure consists of an a-helix and a triple-stranded anti-parallel beta-sheet that are stabilized by four intramolecular disulfide bonds. NaD1 features all the characteristics of the cysteine-stabilized up motif that has been described for a variety of proteins of differing functions ranging from antibacterial insect defensins and ion channel-perturbing scorpion toxins to an elicitor of the sweet taste response. The protein is biologically active against insect pests, which makes it a potential candidate for use in crop protection. NaD1 shares 31% sequence identity with alfAFP, an antifungal protein from alfalfa that confers resistance to a fungal pathogen in transgenic potatoes. The structure of NaD1 was used to obtain a homology model of alfAFP, since NaD1 has the highest level of sequence identity with alfAFP of any structurally characterized antifungal defensin. The structures of NaD1 and alfAFP were used in conjunction with structure - activity data for the radish defensin Rs-AFP2 to provide an insight into structure-function relationships. In particular, a putative effector site was identified in the structure of NaD1 and in the corresponding homology model of alfAFP. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Point mutations that resulted in a substitution of the conserved 3'-penultimate cytidine in genomic RNA or the RNA negative strand of the self-amplifying replicon of the Flavivirus Kunjin virus completely blocked in vivo replication. Similarly, substitutions of the conserved 3'-terminal uridine in the RNA negative or positive strand completely blocked replication or caused much-reduced replication, respectively. The same preference for cytidine in the 3'-terminal dinucleotide was noted in reports of the in vitro activity of the RNA-dependent RNA polymerase (RdRp) for the other genera of Flaviviridae that also employ a double-stranded RNA (dsRNA) template to initiate asymmetric semiconservative RNA positive-strand synthesis. The Kunjin virus replicon results were interpreted in the context of a proposed model for initiation of RNA synthesis based on the solved crystal structure of the RdRp of phi6 bacteriophage, which also replicates efficiently using a dsRNA template with conserved 3'-penultimate cytidines and a 3'-terminal pyrimidine. A previously untested substitution of the conserved pentanucleotide at the top of the 3'-terminal stem-loop of all Flavivirus species also blocked detectable in vivo replication of the Kunjin virus replicon RNA.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Idiosyncratic markers are features of genes and genomes that are so unusual that it is unlikely that they evolved more than once in a lineage of organisms. Here we explore further the potential of idiosyncratic markers and changes to typically conserved tRNA sequences for phylogenetic inference. Hard ticks were chosen as the model group because their phylogeny has been studied extensively. Fifty-eight candidate markers from hard ticks ( family Ixodidae) and 22 markers from the subfamily Rhipicephalinae sensu lato were mapped onto phylogenies of these groups. Two of the most interesting markers, features of the secondary structure of two different tRNAs, gave strong support to the hypothesis that species of the Prostriata ( Ixodes spp.) are monophyletic. Previous analyses of genes and morphology did not strongly support this relationship, instead suggesting that the Prostriata is paraphyletic with respect to the Metastriata ( the rest of the hard ticks). Parallel or convergent evolution was not found in the arrangements of mitochondrial genes in ticks nor were there any reversals to the ancestral arthropod character state. Many of the markers identified were phylogenetically informative, whereas others should be informative with study of additional taxa. Idiosyncratic markers and changes to typically conserved nucleotides in tRNAs that are phylogenetically informative were common in this data set, and thus these types of markers might be found in other organisms.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The HERG K+ channel has very unusual kinetic behavior that includes slow activation but rapid inactivation. These features are critical for normal cardiac repolarization as well as in preventing lethal ventricular arrhythmias. Mutagenesis studies have shown that the extracellular peptide linker joining the fifth transmembrane domain to the pore helix is critical for rapid inactivation of the HERG K+ channel. This peptide linker is also considerably longer in HERG K+ channels, 40 amino acids, than in most other voltage-gated K+ channels. In this study we show that a synthetic 42-residue peptide corresponding to this linker region of the HERG K+ channel does not have defined structural elements in aqueous solution; however, it displays two well defined helical regions when in the presence of SDS micelles. The helices correspond to Trp(585)-Ile(593) and Gly(604)-Tyr(611) of the channel. The Trp(585)-Ile(593) helix has distinct hydrophilic and hydrophobic surfaces. The Gly(604)-Tyr(611) helix corresponds to an N-terminal extension of the pore helix. Electrophysiological studies of HERG currents following application of exogenous S5P peptides show that the amphipathic helix in the S5P linker interacts with the pore region of the channel in a voltage-dependent manner.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The structure of a novel plant defensin isolated from the flowers of Petunia hybrida has been determined by H-1 NMR spectroscopy. P. hybrida defensin 1 (PhD1) is a basic, cysteine-rich, antifungal protein of 47 residues and is the first example of a new subclass of plant defensins with five disulfide bonds whose structure has been determined. PhD1 has the fold of the cysteine-stabilized alphabeta motif, consisting of an alpha-helix and a triple-stranded antiparallel beta-sheet, except that it contains a fifth disulfide bond from the first loop to the alpha-helix. The additional disulfide bond is accommodated in PhD1 without any alteration of its tertiary structure with respect to other plant defensins. Comparison of its structure with those of classic, four-disulfide defensins has allowed us to identify a previously unrecognized hydrogen bond network that is integral to structure stabilization in the family.