49 resultados para REACTOR KINETICS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fertilisation of eggs of free-spawning marine invertebrates depends on factors affecting sperm concentration in the field and also on gamete characteristics such as egg size. In the free-spawning intertidal ascidian Pyura stolonifera mean egg size increased with maternal size in 2 separate populations. The largest ascidian produced eggs that were, on average, 50% greater in volume than the eggs produced by the smallest individual studied. There was no evidence to suggest that egg density varied with adult size and egg dry organic weight increased with maternal size. The fertilisation kinetics of this species were strongly affected by the variation in egg size, with the eggs of large individuals requiring much less concentrated sperm to achieve maximal levels of fertilisation success than the eggs of small individuals. We suggest that variation in egg size between individuals of different sizes and ages may be an important factor in determining fertilisation success for ascidians of this species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The tissue distribution kinetics of a highly bound solute, propranolol, was investigated in a heterogeneous organ, the isolated perfused limb, using the impulse-response technique and destructive sampling. The propranolol concentration in muscle, skin, and fat as well as in outflow perfusate was measured up to 30 min after injection. The resulting data were analysed assuming (1) vascular, muscle, skin and fat compartments as well mixed (compartmental model) and (2) using a distributed-in-space model which accounts for the noninstantaneous intravascular mixing and tissue distribution processes but consists only of a vascular and extravascular phase (two-phase model). The compartmental model adequately described propranolol concentration-time data in the three tissue compartments and the outflow concentration-time curve (except of the early mixing phase). In contrast, the two-phase model better described the outflow concentration-time curve but is limited in accounting only for the distribution kinetics in the dominant tissue, the muscle. The two-phase model well described the time course of propranolol concentration in muscle tissue, with parameter estimates similar to those obtained with the compartmental model. The results suggest, first that the uptake kinetics of propranolol into skin and fat cannot be analysed on the basis of outflow data alone and, second that the assumption of well-mixed compartments is a valid approximation from a practical point of view las, e.g., in physiological based pharmacokinetic modelling). The steady-state distribution volumes of skin and fat were only 16 and 4%, respectively, of that of muscle tissue (16.7 ml), with higher partition coefficient in fat (6.36) than in skin (2.64) and muscle (2.79. (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The convection-dispersion model and its extended form have been used to describe solute disposition in organs and to predict hepatic availabilities. A range of empirical transit-time density functions has also been used for a similar purpose. The use of the dispersion model with mixed boundary conditions and transit-time density functions has been queried recently by Hisaka and Sugiyanaa in this journal. We suggest that, consistent with soil science and chemical engineering literature, the mixed boundary conditions are appropriate providing concentrations are defined in terms of flux to ensure continuity at the boundaries and mass balance. It is suggested that the use of the inverse Gaussian or other functions as empirical transit-time densities is independent of any boundary condition consideration. The mixed boundary condition solutions of the convection-dispersion model are the easiest to use when linear kinetics applies. In contrast, the closed conditions are easier to apply in a numerical analysis of nonlinear disposition of solutes in organs. We therefore argue that the use of hepatic elimination models should be based on pragmatic considerations, giving emphasis to using the simplest or easiest solution that will give a sufficiently accurate prediction of hepatic pharmacokinetics for a particular application. (C) 2000 Wiley-Liss Inc. and the American Pharmaceutical Association J Pharm Sci 89:1579-1586, 2000.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coating anatase TiO2 onto three different particle supports, activated carbon (AC), gamma -alumina (Al2O3) and silica gel (SiO2), by chemical vapor deposition (CVD) was studied. The effect of the CVD synthesis conditions on the loading rate of anatase TiO2 was investigated. It was found that introducing water vapor during CVD or adsorbing water before CVD was crucial to obtain anatase TiO2 on the surface of the particle supports. The evaporation temperature of precursor, deposition temperature in the reactor, flow rate of carrier gas, and the length of coating time were also important parameters to obtain more uniform and repeatable TiO2 coating. High inflow precursor concentration, high CVD reactor temperature and long coating time tended to cause block problem. Coating TiO2 onto small particles by CVD involved both chemical vapor deposition and particle deposition. It was believed that the latter was the reason for the block problem. In addition, the mechanism of CVD process in this study included two parts, pyrolysis and hydrolysis, and one of them was dominant in the CVD process under different synthesis route. Among the three types of materials, silica gel, with higher surface hydroxyl groups and macropore surface area, was found to be the most efficient support in terms of both anatase TiO2 coating and photocatalytic reaction. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The gamma-aminobutyric acid type A (GABA(A)) receptor mediates fast inhibitory synaptic transmission in the CNS. Dysfunction of the GABA(A) receptor would be expected to cause neuronal hyperexcitability, a phenomenon linked with epileptogenesis. We have investigated the functional consequences of an arginine-to-glutamine mutation at position 43 within the GABA(A) gamma(2)-subunit found in a family with childhood absence epilepsy and febrile seizures. Rapid-application experiments performed on receptors expressed in HEK-293 cells demonstrated that the mutation slows GABA(A) receptor deactivation and increases the rate of desensitization, resulting in an accumulation of desensitized receptors during repeated, short applications. In Xenopus laevis oocytes, two-electrode voltage-clamp analysis of steady-state currents obtained from alpha(1)beta(2)gamma(2) or alpha(1)beta(2)gamma(2)(R43Q) receptors did not reveal any differences in GABA sensitivity. However, differences in the benzodiazepine pharmacology of mutant receptors were apparent. Mutant receptors expressed in oocytes displayed reduced sensitivity to diazepam and flunitrazepam but not the imiclazopyricline zolpidem. These results provide evidence of impaired GABA(A) receptor function that could decrease the efficacy of transmission at inhibitory synapses, possibly generating a hyperexcitable neuronal state in thalamocortical networks of epileptic patients possessing the mutant subunit.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Traditional models describing the relationship between photosynthesis (P) and irradiance (I) do not account for photoacclimation to short-term variation in irradiance. Here we develop and test a model that predicts the rate of photosynthesis under fluctuating irradiances at the scale of days to weeks. Using oxygen respirometry, we measured the rates of change in the P-I model parameters P-max (maximum rate of gross photosynthesis) and I-k (sub-saturation irradiance) of the photo-symbiotic coral Turbinaria mesenterina (Lamarck) following large and small increases and decreases in growth irradiance. We analyse the behaviour of the dynamic P-I model in turbid-water conditions using a dataset of 3-month continuous irradiance as the input variable. In response to upward or downward changes in experimental growth irradiance, I-k values decreased or increased exponentially, reaching new and stable levels within 5-10 days. I-k responded 4 times stronger than P-max to changes in growth irradiance. The kinetics of I-k did not show hysteresis, and changed in similar ways when irradiance was increased or decreased in small or large amounts. This suggests that mechanisms associated with photo-protection during increases in irradiance, and the maximisation of photosynthetic efficiency during decreases in irradiance, are equally potent. On the scale of months, the dynamic P-I model did not predict higher rates of photosynthesis than the static P-I model, but buffered the variation in photosynthesis during periods of reduced irradiance. Fourier analysis indicated that the kinetics of I-k closely matches the main periodicities in daily irradiance (1-2 weeks). The recorded kinetics of photoacclimation in the Turbinaria-zooxanthella symbiosis is comparable to that of free-living phytoplankton and faster than that of higher plants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of various culture parameters on the attachment of a recombinant baculovirus to suspended insect cells was examined under normal culture conditions. These parameters included cell density, multiplicity of infection, and composition of the cell growth medium. It was found that the fractional rate of virus attachment was independent of the multiplicity of infection but dependent on the cell density. A first order mathematical model was used to simulate the adsorption kinetics and predict the efficiency of virus attachment under the various culture conditions. This calculated efficiency of virus attachment was observed to decrease at high cell densities, which was attributed to cell clumping. It was also observed that virus attachment was more efficient in Sf900II serum free medium than it was in IPL-41 serum-supplemented medium. This effect was attributed to the protein in serum which may coat the cells and so inhibit adsorption. A general discussion relating the observations made in-these experiments to the kinetics of recombinant baculovirus adsorption to suspended insect cells is presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The kinetics of mechanical alloying have been investigated by examining the effect that ball mass has on the rate at which titanium carbide forms from the elements. By varying the ball density while keeping the ball diameter and the charge ratio constant, the collision energy was independently controlled. Grinding media with a density from 3.8 g cm(-3) (agate) to 16.4 g cm(-3) (tungsten carbide) were used. The reaction rate increases exponentially with ball mass until a critical level is reached, which is determined by the induced temperature rise. Above this level, collisions of higher energy have no advantage. It is also shown that the reaction rate increases exponentially with the rate at which strain accumulates in the reactants. It is suggested that the strain accumulation rate in mechanically induced reactions is analogous to temperature in thermally induced chemical reactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Titanium carbonitride-based cermets are important materials for contemporary cutting tools. Ceramic powders of Ti(CN), TaC, WC were mixed, compacted and heat-treated at high temperatures to form (Ti, W, Ta)(C, N) solid solution, which was then ball-milled to fine powders before being mixed with metallic binder and compacted. Liquid-phase sintering of the samples was carried out in a nitrogen atmosphere at different sintering temperatures and holding times. The microhardness and porosity of the sintered cermets were studied. It is demonstrated that the microhardness increases with sintering temperature, but at the same time, the porosity level also goes up with temperature and time. At the beginning of sintering (zero holding time), the majority of the pores are small (0.1 similar to 1 mu m); during sintering, the larger ports grow at the expense of smaller pores and the resulting pores are all concentrated in the 10 similar to 100 mu m range. The number of larger pores increases with temperature and prolonged holding time, which results in deteriorated properties. (C) 1997 Elsevier Science S.A.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Renaturation of protein expressed as inclusion bodies within Escherichia coli is a key step in many bioprocesses. Operating conditions for the refolding step dramatically affect the amount of protein product recovered, and hence profoundly influence the process economics. The first systematic comparison of refolding conducted in batch, fed-batch and continuous stirred-tank reactors is provided Refolding is modeled as kinetic competition between first-order refolding (equilibrium reaction) and irreversible aggregation (second-order). Simulations presented allow direct comparison between different flowsheets and refolding schemes using a dimensionless economic objective. As expected from examination of the reaction kinetics, batch operation is the most inefficient merle. For the base process considered, the overall cost of fed-batch and continuous refolding is virtually identical (less than half that of the batch process). Reactor selection and optimization of refolding using overall economics are demonstrated to be vitally important.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Absorption kinetics of solutes given with the subcutaneous administration of fluids is ill-defined. The gamma emitter, technitium pertechnetate, enabled estimates of absorption rate to be estimated independently using two approaches. In the first approach, the counts remaining at the site were estimated by imaging above the subcutaneous administration site, whereas in the second approach, the plasma technetium concentration-time profiles were monitored up to 8 hr after technetium administration. Boluses of technetium pertechnetate were given both intravenously and subcutaneously on separate occasions with a multiple dosing regimen using three doses on each occasion. The disposition of technetium after iv administration was best described by biexponential kinetics with a V-ss of 0.30 +/- 0.11 L/kg and a clearance of 30.0 +/- 13.1 ml/min. The subcutaneous absorption kinetics was best described as a single exponential process with a half-life of 18.16 +/- 3.97 min by image analysis and a half-life of 11.58 +/- 2.48 min using plasma technetium time data. The bioavailability of technetium by the subcutaneous route was estimated to be 0.96 +/- 0.12. The absorption half-life showed no consistent change with the duration of the subcutaneous infusion. The amount remaining at the absorption site with time was similar when analyzed using image analysis, and plasma concentrations assuming multiexponential disposition kinetics and a first-order absorption process. Profiles of fraction remaining at the absorption sire generated by deconvolution analysis, image analysis, and assumption of a constant first-order absorption process were similar. Slowing of absorption from the subcutaneous administration site is apparent after the last bolus dose in three of the subjects and can De associated with the stopping of the infusion. In a fourth subject, the retention of technetium at the subcutaneous site is more consistent with accumulation of technetium near the absorption site as a result of systemic recirculation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The diffusion model for percutaneous absorption is developed for the specific case of delivery to the skin being limited by the application of a finite amount of solute. Two cases are considered; in the first, there is an application of a finite donor (vehicle) volume, and in the second, there are solvent-deposited solids and a thin vehicle with a high partition coefficient. In both cases, the potential effect of an interfacial resistance at the stratum corneum surface is also considered. As in the previous paper, which was concerned with the application of a constant donor concentration, clearance limitations due to the viable eqidermis, the in vitro sampling rate, or perfusion rate in vivo are included. Numerical inversion of the Laplace domain solutions was used for simulations of solute flux and cumulative amount absorbed and to model specific examples of percutaneous absorption of solvent-deposited solids. It was concluded that numerical inversions of the Laplace domain solutions for a diffusion model of the percutaneous absorption, using standard scientific software (such as SCIENTIST, MicroMath Scientific software) on modern personal computers, is a practical alternative to computation of infinite series solutions. Limits of the Laplace domain solutions were used to define the moments of the flux-time profiles for finite donor volumes and the slope of the terminal log flux-time profile. The mean transit time could be related to the diffusion time through stratum corneum, viable epidermal, and donor diffusion layer resistances and clearance from the receptor phase. Approximate expressions for the time to reach maximum flux (peak time) and maximum flux were also derived. The model was then validated using reported amount-time and flux-time profiles for finite doses applied to the skin. It was concluded that for very small donor phase volume or for very large stratum corneum-vehicle partitioning coefficients (e.g., for solvent deposited solids), the flux and amount of solute absorbed are affected by receptor conditions to a lesser extent than is obvious for a constant donor constant donor concentrations. (C) 2001 Wiley-Liss, Inc. and the American Pharmaceutical Association J Pharm Sci 90:504-520, 2001.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The microwave and thermal cure processes for the epoxy-amine systems N,N,N',N'-tetraglycidyl-4,4'-diaminodiphenyl methane (TGDDM) with diaminodiphenyl sulfone (DDS) and diaminodiphenyl methane (DDM) have been investigated. The DDS system was studied at a single cure temperature of 433 K and a single stoichiometry of 27 wt% and the DDM system was studied at two stoichiometries, 19 and 32 wt%, and a range temperatures between 373 and 413 K. The best values the kinetic rate parameters for the consumption of amines have been determined by a least squares curve Ft to a model for epoxy-amine cure. The activation energies for the rate parameters for the MY721/DDM system were determined as was the overall activation energy for the cure reaction which was found to be 62 kJ mol(-1). No evidence was found for any specific effect of the microwave radiation on the rate parameters, and the systems were both found to be characterized by a negative substitution effect. Copyright (C) 2001 John Wiley & Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The batch removal of hexavalent chromium (Cr(Vl)) from wastewater under different experimental conditions using economic adsorbents was investigated in this study. These adsorbents were produced from the pyrolysis and activation of the waste tyres (TAC) and from the pyrolysis of sawdust (SPC). The performance of these adsorbents against commercial activated carbon F400 (CAC) has also been carried out. The removal was favoured at low pH, with maximum removal at pH = 2 for all types of carbon. The effects of concentration, temperature and particle size have been reported. All sorbents were found to efficiently remove Cr(VI) from solution. The batch sorption kinetics have been tested for a first-order reversible reaction, a first-order and second-order reaction. The rate constants of adsorption for all these kinetic models have been calculated. The applicability of the Langmuir isotherm for the present system has been tested at different temperatures. The thermodynamic parameters (AGO, K,) obtained indicate the endothermic nature of Cr(Vl) adsorption on TAC, SPC and CAC. (C) 2001 Elsevier Science B.V. All rights reserved.