54 resultados para Pseudomonas aeruginosa LBI
Resumo:
In this study, the suitability of two repetitive-element-based PCR (rep-PCR) assays, enterobacterial repetitive intergenic consensus (ERIC)-PCR and BOX-PCR, to rapidly characterize Pseudomonas aeruginosa strains isolated from patients with cystic fibrosis (CF) was examined. ERIC-PCR utilizes paired sequence-specific primers and BOX-PCR a single primer that target highly conserved repetitive elements in the P. aeruginosa genome. Using these rep-PCR assays, 163 P. aeruginosa isolates cultured from sputa collected from 50 patients attending an adult CF clinic and 50 children attending a paediatric CF clinic were typed. The results of the rep-PCR assays were compared to the results of PFGE. All three assays revealed the presence of six major clonal groups shared by multiple patients attending either of the CF clinics, with the dominant clonal group infecting 38% of all patients. This dominant clonal group was not related to the dominant clonal group detected in Sydney or Melbourne (pulsotype 1), nor was it related to the dominant groups detected in the UK. In all, PFGE and rep-PCR identified 58 distinct clonal groups, with only three of these shared between the two clinics. The results of this study showed that both ERIC-PCR and BOX-PCR are rapid, highly discriminatory and reproducible assays that proved to be powerful surveillance screening tools for the typing of clinical P. aeruginosa isolates recovered from patients with CF.
Resumo:
Virulence of the opportunistic pathogen Pseudomonas aeruginosa involves the coordinate expression of a wide range of virulence factors including type IV pili which are required for colonization of host tissues and are associated with a form of surface translocation termed twitching motility. Twitching motility in P. aeruginosa is controlled by a complex signal transduction pathway which shares many modules in common with chemosensory systems controlling flagella rotation in bacteria and which is composed, in part, of the previously described proteins PilG, PilH, PilI, PilJ and PilK. Here we describe another three components of this pathway: ChpA, ChpB and ChpC, as well as two downstream genes, ChpD and ChpE, which may also be involved. The central component of the pathway, ChpA, possesses nine potential sites of phosphorylation: six histidine-containing phosphotransfer (HPt) domains, two novel serine- and threonine-containing phosphotransfer (SPt, TPt) domains and a CheY-like receiver domain at its C-terminus, and as such represents one of the most complex signalling proteins yet described in nature. We show that the Chp chemosensory system controls twitching motility and type IV pili biogenesis through control of pili assembly and/or retraction as well as expression of the pilin subunit gene pilA. The Chp system is also required for full virulence in a mouse model of acute pneumonia.
Resumo:
Recent studies have determined that Pseudomonas aeruginosa can live in a biofilm mode within hypoxic mucus in the airways of patients with cystic fibrosis (CF). P. aeruginosa grown under anaerobic and biofilm conditions may better approximate in vivo growth conditions in the CF airways, and combination antibiotic susceptibility testing of anaerobically and biofilm-grown isolates may be more relevant than traditional susceptibility testing under planktonic aerobic conditions. We tested 16 multidrug-resistant isolates of P. aeruginosa derived from CF patients using multiple combination bactericidal testing to compare the efficacies of double and triple antibiotic combinations against the isolates grown under traditional aerobic planktonic conditions, in planktonic anaerobic conditions, and in biofilm mode. Both anaerobically grown and biofilm-grown bacteria were significantly less susceptible (P < 0.01) to single and combination antibiotics than corresponding aerobic planktonically grown isolates. Furthermore, the antibiotic combinations that were bactericidal under anaerobic conditions were often different from those that were bactericidal against the same organisms grown as biofilms. The most effective combinations under all conditions were colistin (tested at concentrations suitable for nebulization) either alone or in combination with tobramycin (10 mu g ml(-1)), followed by meropenem combined with tobramycin or ciprofloxacin. The findings of this study illustrate that antibiotic sensitivities are dependent on culture conditions and highlight the complexities of choosing appropriate combination therapy for multidrug-resistant P. aeruginosa in the CF lung.
Resumo:
Aim: Concentrations of antimicrobials below minimum inhibitory concentration (subMIC) may reduce the production by Pseudomonas aeruginosa of virulence factors such as elastase. We sought to determine whether the reduction in elastase production may be mediated by a reduction in acyl-homoserine lactones. Methods: Pseudomonas aeruginosa in broth was exposed to three conditions for ceftazidime and tobramycin: control, 6% MIC and 25% MIC. Elastase was assayed using elastin congo red. N-(3-Oxododecanoyl)-homoserine lactone (C12-HSL) and N-butyryl-homoserine lactone (C4-HSL) were assayed using biosensor Escherichia coli. Results: Elastase was unchanged with ceftazidime. Elastase was reduced by 16% at 6% MIC tobramycin and reduced by 70% at 25% MIC tobramycin (P
Resumo:
Virulence of Pseudomonas aeruginosa involves the co-ordinate expression of a range of factors including type IV pili (tfp), the type III secretion system (TTSS) and quorum sensing. Tfp are required for twitching motility, efficient biofilm formation, and for adhesion and type III secretion (TTS)-mediated damage to mammalian cells. We describe a novel gene (fimL) that is required for tfp biogenesis and function, for TTS and for normal biofilm development in P. aeruginosa. The predicted product of fimL is homologous to the N-terminal domain of ChpA, except that its putative histidine and threonine phosphotransfer sites have been replaced with glutamine. fimL mutants resemble vfr mutants in many aspects including increased autolysis, reduced levels of surface-assembled tfp and diminished production of type III secreted effectors. Expression of vfr in trans can complement fimL mutants. vfr transcription and production is reduced in fimL mutants whereas cAMP levels are unaffected. Deletion and insertion mutants of fimL frequently revert to wild-type phenotypes suggesting that an extragenic suppressor mutation is able to overcome the loss of fimL. vfr transcription and production, as well as cAMP levels, are elevated in these revertants, while Pseudomonas quinolone signal (PQS) production is reduced. These results suggest that the site(s) of spontaneous mutation is in a gene(s) which lies upstream of vfr transcription, cAMP, production, and PQS synthesis. Our studies indicate that Vfr and FimL are components of intersecting pathways that control twitching motility, TTSS and autolysis in P. aeruginosa.
Resumo:
Pseudomonas aeruginosa causes severe life-threatening airway infections that are a frequent cause for hospitalization of cystic fibrosis (CF) patients. These Gram-negative pathogens possess flagella that contain the protein flagellin as a major structural component. Flagellin binds to the host cell glycolipid asialoGM1 (ASGM1), which appears enriched in luminal membranes of respiratory epithelial cells. We demonstrate that in mouse airways, luminal exposure to flagellin leads to inhibition of Na+ absorption by the epithelial Na+ channel ENaC, but does not directly induce a secretory response. Inhibition of ENaC was observed in tracheas of wild-type mice and was attenuated in mice homozygous for the frequent cystic fibrosis conductance regulator (CFTR) mutation G551D. Similar to flagellin, anti-ASGM1 antibody also inhibited ENaC. The inhibitory effects of flagellin on ENaC were attenuated by blockers of the purinergic signaling pathway, although an increase in the intracellular Ca2+ concentration by recombinant or purified flagellin or whole flagella was not observed. Because an inhibitor of the mitogen-activated protein kinase (MAPK) pathway also attenuated the effects of flagellin on Na+ absorption, we conclude that flagellin exclusively inhibits ENaC, probably due to release of ATP and activation of purinergic receptors of the P2Y subtype. Stimulation of these receptors activates the MAPK pathway, thereby leading to inhibition of ENaC. Thus, P. aeruginosa reduces Na+ absorption, which could enhance local mucociliary clearance, a mechanism that seem to be attenuated in CF.
Resumo:
Protease IV is important in the pathogenesis of Pseudomonas aeruginosa-induced microbial keratitis, but little is known of its role in cystic fibrosis (CF) lung infection. In this study protease IV production was examined in 43 P. aeruginosa isolates (24 non-clonal and 19 clonal) from the lungs of chronically infected adult patients attending the Royal Prince Alfred Hospital CF Clinic, Sydney, Australia. Overall, 32/43 (74 %) isolates were positive for protease IV protein by Western blotting and 22/43 (51 %) had evidence of active protease IV on gelatin zymography. Clonal strains were 1.6 times more likely than non-clonal strains to produce protease IV [18/19 (95 %) versus 14/24 (58 %), RR=1.6, CI 1.1–2.3, P=0.007] and 3 times more likely to secrete the protein [16/19 (84 %) versus 6/24 (25 %), RR=3.4, CI 1.6–6.9, P
Resumo:
The virulence of Pseudomonas aeruginosa and other surface pathogens involves the coordinate expression of a wide range of virulence determinants, including type IV pili. These surface filaments are important for the colonization of host epithelial tissues and mediate bacterial attachment to, and translocation across, surfaces by a process known as twitching motility. This process is controlled in part by a complex signal transduction system whose central component, ChpA, possesses nine potential sites of phosphorylation, including six histidine-containing phosphotransfer (HPt) domains, one serine-containing phosphotransfer domain, one threonine-containing phosphotransfer domain, and one CheY-like receiver domain. Here, using site-directed mutagenesis, we show that normal twitching motility is entirely dependent on the CheY-like receiver domain and partially dependent on two of the HPt domains. Moreover, under different assay conditions, point mutations in several of the phosphotransfer domains of ChpA give rise to unusual "swarming" phenotypes, possibly reflecting more subtle perturbations in the control of P. aeruginosa motility that are not evident from the conventional twitching stab assay. Together, these results suggest that ChpA plays a central role in the complex regulation of type IV pilus-mediated motility in P. aeruginosa
Resumo:
Several cystic fibrosis (CF) mouse models demonstrate an increased susceptibility to Pseudomonas aeruginosa lung infection, characterized by excessive inflammation and high rates of mortality. Here we developed a model of chronic P. aeruginosa lung disease in mice homozygous for the murine CF transmembrane conductance regulator G551D mutation that provides an excellent model for CF lung disease. After 3 days of infection with mucoid P. aeruginosa entrapped in agar beads, the G551D animals lost substantially more body weight than non-CF control animals and were less able to control the infection, harboring over 40-fold more bacteria in the lung. The airways of infected G551D animals contained altered concentrations of the inflammatory mediators tumor necrosis factor-alpha, KC/N51, and macrophage inflammatory protein-2 during the first 2 days of infection, suggesting that an ineffective inflammatory response is partly responsible for the clearance defect.