65 resultados para Pruning operators
Resumo:
Sports venues are in a position to potentially influence the safety practices of their patrons. This study examined the knowledge, beliefs and attitudes of venue operators that could influence the use of protective eyewear by squash players. A 50% random sample of all private and public squash venues affiliated with the Victorian Squash Federation in metropolitan Melbourne was selected. Face-to-face interviews were conducted with 15 squash venue operators during August 2001. Interviews were transcribed and content and thematic analyses were performed. The content of the interviews covered five topics: (1) overall injury risk perception, (2) eye injury occurrence, (3) knowledge, behaviors, attitudes and beliefs associated with protective eyewear, (4) compulsory protective eyewear and (5) availability of protective eyewear at venues. Venue operators were mainly concerned with the severe nature of eye injuries, rather than the relatively low incidence of these injuries. Some venue operators believed that players should wear any eyewear, rather than none at all, and believed that more players should use protective eyewear. Generally, they did not believe that players with higher levels of experience and expertise needed to wear protective eyewear when playing. Only six venues had at least one type of eyewear available for players to hire or borrow or to purchase. Operators expressed a desire to be informed about correct protective eyewear. Appropriate protective eyewear is not readily available at squash venues. Better-informed venue operators may be more likely to provide suitable protective eyewear.
Resumo:
In this paper, we introduce and study a new system of variational inclusions involving (H, eta)-monotone operators in Hilbert space. Using the resolvent operator associated with (H, eta)monotone operators, we prove the existence and uniqueness of solutions for this new system of variational inclusions. We also construct a new algorithm for approximating the solution of this system and discuss the convergence of the sequence of iterates generated by the algorithm. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
We develop results for bifurcation from the principal eigenvalue for certain operators based on the p-Laplacian and containing a superlinear nonlinearity with a critical Sobolev exponent. The main result concerns an asymptotic estimate of the rate at which the solution branch departs from the eigenspace. The method can also be applied for nonpotential operators.
Resumo:
The one-dimensional Hubbard model is integrable in the sense that it has an infinite family of conserved currents. We explicitly construct a ladder operator which can be used to iteratively generate all of the conserved current operators. This construction is different from that used for Lorentz invariant systems such as the Heisenberg model. The Hubbard model is not Lorentz invariant, due to the separation of spin and charge excitations. The ladder operator is obtained by a very general formalism which is applicable to any model that can be derived from a solution of the Yang-Baxter equation.
Resumo:
We show that integrability of the BCS model extends beyond Richardson's model (where all Cooper pair scatterings have equal coupling) to that of the Russian doll BCS model for which the couplings have a particular phase dependence that breaks time-reversal symmetry. This model is shown to be integrable using the quantum inverse scattering method, and the exact solution is obtained by means of the algebraic Bethe ansatz. The inverse problem of expressing local operators in terms of the global operators of the monodromy matrix is solved. This result is used to find a determinant formulation of a correlation function for fluctuations in the Cooper pair occupation numbers. These results are used to undertake exact numerical analysis for small systems at half-filling.
Resumo:
Classical mechanics is formulated in complex Hilbert space with the introduction of a commutative product of operators, an antisymmetric bracket and a quasidensity operator that is not positive definite. These are analogues of the star product, the Moyal bracket, and the Wigner function in the phase space formulation of quantum mechanics. Quantum mechanics is then viewed as a limiting form of classical mechanics, as Planck's constant approaches zero, rather than the other way around. The forms of semiquantum approximations to classical mechanics, analogous to semiclassical approximations to quantum mechanics, are indicated.
Resumo:
In the usual formulation of quantum mechanics, groups of automorphisms of quantum states have ray representations by unitary and antiunitary operators on complex Hilbert space, in accordance with Wigner's theorem. In the phase-space formulation, they have real, true unitary representations in the space of square-integrable functions on phase space. Each such phase-space representation is a Weyl–Wigner product of the corresponding Hilbert space representation with its contragredient, and these can be recovered by 'factorizing' the Weyl–Wigner product. However, not every real, unitary representation on phase space corresponds to a group of automorphisms, so not every such representation is in the form of a Weyl–Wigner product and can be factorized. The conditions under which this is possible are examined. Examples are presented.
A unified and complete construction of all finite dimensional irreducible representations of gl(2|2)
Resumo:
Representations of the non-semisimple superalgebra gl(2/2) in the standard basis are investigated by means of the vector coherent state method and boson-fermion realization. All finite-dimensional irreducible typical and atypical representations and lowest weight (indecomposable) Kac modules of gl(2/2) are constructed explicity through the explicit construction of all gl(2) circle plus gl(2) particle states (multiplets) in terms of boson and fermion creation operators in the super-Fock space. This gives a unified and complete treatment of finite-dimensional representations of gl(2/2) in explicit form, essential for the construction of primary fields of the corresponding current superalgebra at arbitrary level.
Resumo:
Superconducting pairing of electrons in nanoscale metallic particles with discrete energy levels and a fixed number of electrons is described by the reduced Bardeen, Cooper, and Schrieffer model Hamiltonian. We show that this model is integrable by the algebraic Bethe ansatz. The eigenstates, spectrum, conserved operators, integrals of motion, and norms of wave functions are obtained. Furthermore, the quantum inverse problem is solved, meaning that form factors and correlation functions can be explicitly evaluated. Closed form expressions are given for the form factors and correlation functions that describe superconducting pairing.
Resumo:
Evolution strategies are a class of general optimisation algorithms which are applicable to functions that are multimodal, nondifferentiable, or even discontinuous. Although recombination operators have been introduced into evolution strategies, the primary search operator is still mutation. Classical evolution strategies rely on Gaussian mutations. A new mutation operator based on the Cauchy distribution is proposed in this paper. It is shown empirically that the new evolution strategy based on Cauchy mutation outperforms the classical evolution strategy on most of the 23 benchmark problems tested in this paper. The paper also shows empirically that changing the order of mutating the objective variables and mutating the strategy parameters does not alter the previous conclusion significantly, and that Cauchy mutations with different scaling parameters still outperform the Gaussian mutation with self-adaptation. However, the advantage of Cauchy mutations disappears when recombination is used in evolution strategies. It is argued that the search step size plays an important role in determining evolution strategies' performance. The large step size of recombination plays a similar role as Cauchy mutation.
Resumo:
This is the second in a series of articles whose ultimate goal is the evaluation of the matrix elements (MEs) of the U(2n) generators in a multishell spin-orbit basis. This extends the existing unitary group approach to spin-dependent configuration interaction (CI) and many-body perturbation theory calculations on molecules to systems where there is a natural partitioning of the electronic orbital space. As a necessary preliminary to obtaining the U(2n) generator MEs in a multishell spin-orbit basis, we must obtain a complete set of adjoint coupling coefficients for the two-shell composite Gelfand-Paldus basis. The zero-shift coefficients were obtained in the first article of the series. in this article, we evaluate the nonzero shift adjoint coupling coefficients for the two-shell composite Gelfand-Paldus basis. We then demonstrate that the one-shell versions of these coefficients may be obtained by taking the Gelfand-Tsetlin limit of the two-shell formulas. These coefficients,together with the zero-shift types, then enable us to write down formulas for the U(2n) generator matrix elements in a two-shell spin-orbit basis. Ultimately, the results of the series may be used to determine the many-electron density matrices for a partitioned system. (C) 1998 John Wiley & Sons, Inc.