72 resultados para Probabilistic Projections


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Evolutionary algorithms perform optimization using a population of sample solution points. An interesting development has been to view population-based optimization as the process of evolving an explicit, probabilistic model of the search space. This paper investigates a formal basis for continuous, population-based optimization in terms of a stochastic gradient descent on the Kullback-Leibler divergence between the model probability density and the objective function, represented as an unknown density of assumed form. This leads to an update rule that is related and compared with previous theoretical work, a continuous version of the population-based incremental learning algorithm, and the generalized mean shift clustering framework. Experimental results are presented that demonstrate the dynamics of the new algorithm on a set of simple test problems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Deregulations and market practices in power industry have brought great challenges to the system planning area. In particular, they introduce a variety of uncertainties to system planning. New techniques are required to cope with such uncertainties. As a promising approach, probabilistic methods are attracting more and more attentions by system planners. In small signal stability analysis, generation control parameters play an important role in determining the stability margin. The objective of this paper is to investigate power system state matrix sensitivity characteristics with respect to system parameter uncertainties with analytical and numerical approaches and to identify those parameters have great impact on system eigenvalues, therefore, the system stability properties. Those identified parameter variations need to be investigated with priority. The results can be used to help Regional Transmission Organizations (RTOs) and Independent System Operators (ISOs) perform planning studies under the open access environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Information about the comparative magnitude of the burden from various diseases and injuries is a critical input into building the evidence base for health policies and programmes. Such information should be based on a critical evaluation of all available epidemiological data using standard and comparable procedures across diseases and injuries, including information on the age at death and the incidence, duration and severity of cases who do not die prematurely from the disease. A summary measure, disability-adjusted life yrs (DALYs), has been developed to simultaneously measure the amount of disease burden due to premature mortality and the amount due to the nonfatal consequences of disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We quantified the morphology of over 350 pyramidal neurons with identified ipsilateral corticocortical projections to the primary (V1) and middle temporal (MT) visual areas of the marmoset monkey, following intracellular injection of Lucifer Yellow into retrogradely labelled cells. Paralleling the results of studies in which randomly sampled pyramidal cells were injected, we found that the size of the basal dendritic tree of connectionally identified cells differed between cortical areas, as did the branching complexity and spine density. We found no systematic relationship between dendritic tree structure and axon target or length. Instead, the size of the basal dendritic tree increased roughly in relation to increasing distance from the occipital pole, irrespective of the length of the connection or the cortical layer in which the neurons were located. For example, cells in the second visual area had some of the smallest and least complex dendritic trees irrespective of whether they projected to V1 or MT, while those in the dorsolateral area (DL) were among the largest and most complex. We also observed that systematic differences in spine number were more marked among V1-projecting cells than MT-projecting cells. These data demonstrate that the previously documented systematic differences in pyramidal cell morphology between areas cannot simply be attributed to variable proportions of neurons projecting to different targets, in the various areas. Moreover, they suggest that mechanisms intrinsic to the area in which neurons are located are strong determinants of basal dendritic field structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider the statistical problem of catalogue matching from a machine learning perspective with the goal of producing probabilistic outputs, and using all available information. A framework is provided that unifies two existing approaches to producing probabilistic outputs in the literature, one based on combining distribution estimates and the other based on combining probabilistic classifiers. We apply both of these to the problem of matching the HI Parkes All Sky Survey radio catalogue with large positional uncertainties to the much denser SuperCOSMOS catalogue with much smaller positional uncertainties. We demonstrate the utility of probabilistic outputs by a controllable completeness and efficiency trade-off and by identifying objects that have high probability of being rare. Finally, possible biasing effects in the output of these classifiers are also highlighted and discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: The structure of proteins may change as a result of the inherent flexibility of some protein regions. We develop and explore probabilistic machine learning methods for predicting a continuum secondary structure, i.e. assigning probabilities to the conformational states of a residue. We train our methods using data derived from high-quality NMR models. Results: Several probabilistic models not only successfully estimate the continuum secondary structure, but also provide a categorical output on par with models directly trained on categorical data. Importantly, models trained on the continuum secondary structure are also better than their categorical counterparts at identifying the conformational state for structurally ambivalent residues. Conclusion: Cascaded probabilistic neural networks trained on the continuum secondary structure exhibit better accuracy in structurally ambivalent regions of proteins, while sustaining an overall classification accuracy on par with standard, categorical prediction methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes an application of decoupled probabilistic world modeling to achieve team planning. The research is based on the principle that tbe action selection mechanism of a member in a robot team cm select am effective action if a global world model is available to all team members. In the real world, the sensors are imprecise, and are individual to each robot, hence providing each robot a partial and unique view about the environment. We address this problem by creating a probabilistic global view on each agent by combining the perceptual information from each robot. This probsbilistie view forms the basis for selecting actions to achieve the team goal in a dynamic environment. Experiments have been carried ont to investigate the effectiveness of this principle using custom-built robots for real world performance, in addition, to extensive simulation results. The results show an improvement in team effectiveness when using probabilistic world modeling based on perception sharing for team planning.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There has been an increased demand for characterizing user access patterns using web mining techniques since the informative knowledge extracted from web server log files can not only offer benefits for web site structure improvement but also for better understanding of user navigational behavior. In this paper, we present a web usage mining method, which utilize web user usage and page linkage information to capture user access pattern based on Probabilistic Latent Semantic Analysis (PLSA) model. A specific probabilistic model analysis algorithm, EM algorithm, is applied to the integrated usage data to infer the latent semantic factors as well as generate user session clusters for revealing user access patterns. Experiments have been conducted on real world data set to validate the effectiveness of the proposed approach. The results have shown that the presented method is capable of characterizing the latent semantic factors and generating user profile in terms of weighted page vectors, which may reflect the common access interest exhibited by users among same session cluster.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Web transaction data between Web visitors and Web functionalities usually convey user task-oriented behavior pattern. Mining such type of click-stream data will lead to capture usage pattern information. Nowadays Web usage mining technique has become one of most widely used methods for Web recommendation, which customizes Web content to user-preferred style. Traditional techniques of Web usage mining, such as Web user session or Web page clustering, association rule and frequent navigational path mining can only discover usage pattern explicitly. They, however, cannot reveal the underlying navigational activities and identify the latent relationships that are associated with the patterns among Web users as well as Web pages. In this work, we propose a Web recommendation framework incorporating Web usage mining technique based on Probabilistic Latent Semantic Analysis (PLSA) model. The main advantages of this method are, not only to discover usage-based access pattern, but also to reveal the underlying latent factor as well. With the discovered user access pattern, we then present user more interested content via collaborative recommendation. To validate the effectiveness of proposed approach, we conduct experiments on real world datasets and make comparisons with some existing traditional techniques. The preliminary experimental results demonstrate the usability of the proposed approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Back and von Wright have developed algebraic laws for reasoning about loops in the refinement calculus. We extend their work to reasoning about probabilistic loops in the probabilistic refinement calculus. We apply our algebraic reasoning to derive transformation rules for probabilistic action systems. In particular we focus on developing data refinement rules for probabilistic action systems. Our extension is interesting since some well known transformation rules that are applicable to standard programs are not applicable to probabilistic ones: we identify some of these important differences and we develop alternative rules where possible. In particular, our probabilistic action system data refinement rules are new.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new methodology is proposed for the analysis of generation capacity investment in a deregulated market environment. This methodology proposes to make the investment appraisal using a probabilistic framework. The probabilistic production simulation (PPC) algorithm is used to compute the expected energy generated, taking into account system load variations and plant forced outage rates, while the Monte Carlo approach has been applied to model the electricity price variability seen in a realistic network. The model is able to capture the price and hence the profitability uncertainties for generator companies. Seasonal variation in the electricity prices and the system demand are independently modeled. The method is validated on IEEE RTS system, augmented with realistic market and plant data, by using it to compare the financial viability of several generator investments applying either conventional or directly connected generator (powerformer) technologies. The significance of the results is assessed using several financial risk measures.