26 resultados para Populations of models, Latin Hypercube Sampling


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Loss of genetic diversity and increased population differentiation from source populations are common problems associated with translocation programmes established from captive-bred stock or a small number of founders. The bridled nailtail wallaby is one of the most endangered macropods in Australia, having been reduced to a single remnant population in the last 100 years. A translocated population of bridled nailtail wallabies was established using animals sourced directly from the remnant population (wild-released) as well as the progeny of animals collected for a captive breeding programme (captive-bred). The aims of this study were to compare genetic diversity among released animals and their wild-born progeny to genetic diversity observed in the remnant population, and to monitor changes in genetic diversity over time as more animals were released into the population. Heterozygosity did not differ between the translocated and remnant population; however, allelic diversity was significantly reduced across all released animals and their wild-born progeny. Animals bred in captivity and their wild-born progeny were also significantly differentiated from the source population after just four generations. Wild-released animals, however, were representative of the source population and several alleles were unique to this group. Both heterozygosity and allelic diversity among translocated animals decreased over time with the additional release of captive-bred animals, as no new genetic stock was added to the population. Captive breeding programmes can provide large numbers of animals for release, but this study highlights the importance of sourcing animals directly from remnant populations in order to maintain genetic diversity and minimise genetic drift.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Golgi membranes and Golgi-derived vesicles are associated with multiple cytoskeletal proteins and motors, the diversity and distribution of which have not yet been defined. Carrier vesicles were separated from Golgi membranes, using an in vitro budding assay, and different populations of vesicles were separated using sucrose density gradients. Three main populations of vesicles labeled with beta-COP, gamma-adaptin, or p200/myosin II were separated and analyzed for the presence of actin/actin-binding proteins, beta-Actin was bound to Golgi cisternae and to all populations of newly budded vesicles. Centractin was selectively associated with vesicles co-distributing with beta-COP-vesicles, while p200/myosin II (non-muscle myosin IIA) and non-muscle myosin IIB were found on different vesicle populations. Isoforms of the Tm5 tropomyosins were found on selected Golgi-derived vesicles, while other Tm isoforms did not colocalize with Tm5 indicating the association of specialized actin filaments with Golgi-derived vesicles. Golgi-derived vesicles were shown to bind to F-actin polymerized from cytosol with Jasplakinolide. Thus, newly budded, coated vesicles derived from Golgi membranes can bind to actin and are customized for differential interactions with microfilaments by the presence of selective arrays of actin-binding proteins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Single-copy restriction fragment length polymorphism (RFLP) markers were used to determine the genetic structure of the global population of Mycosphaerella musicola, the cause of Sigatoka (yellow Sigatoka) disease of banana. The isolates of M. musicola examined were grouped into four geographic populations representing Africa, Latin America and the Caribbean, Australia and Indonesia. Moderate levels of genetic diversity were observed for most of the populations (H = 0.22-0.44). The greatest genetic diversity was found in the Indonesian population (H = 0.44). Genotypic diversity was close to 50% in all populations. Population differentiation tests showed that the geographic populations of Africa, Latin America and the Caribbean, Australia and Indonesia were genetically different populations. Using F-ST tests, very high levels of genetic differentiation were detected between all the population pairs (F-ST > 0.40), with the exception of the Africa and Latin America-Caribbean population pair. These two populations differed by only 3% (F-ST = 0.03), and were significantly different (P < 0.05) from all other population pairs. The high level of genetic diversity detected in Indonesia in comparison to the other populations provides some support for the theory that M. musicola originated in South-east Asia and that M. musicola populations in other regions were founded by isolates from the South-east Asian region. The results also suggest the migration of M. musicola between Africa and the Latin America-Caribbean region.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fine-scale spatial genetic structure (SGS) in natural tree populations is largely a result of restricted pollen and seed dispersal. Understanding the link between limitations to dispersal in gene vectors and SGS is of key interest to biologists and the availability of highly variable molecular markers has facilitated fine-scale analysis of populations. However, estimation of SGS may depend strongly on the type of genetic marker and sampling strategy (of both loci and individuals). To explore sampling limits, we created a model population with simulated distributions of dominant and codominant alleles, resulting from natural regeneration with restricted gene flow. SGS estimates from subsamples (simulating collection and analysis with amplified fragment length polymorphism (AFLP) and microsatellite markers) were correlated with the 'real' estimate (from the full model population). For both marker types, sampling ranges were evident, with lower limits below which estimation was poorly correlated and upper limits above which sampling became inefficient. Lower limits (correlation of 0.9) were 100 individuals, 10 loci for microsatellites and 150 individuals, 100 loci for AFLPs. Upper limits were 200 individuals, five loci for microsatellites and 200 individuals, 100 loci for AFLPs. The limits indicated by simulation were compared with data sets from real species. Instances where sampling effort had been either insufficient or inefficient were identified. The model results should form practical boundaries for studies aiming to detect SGS. However, greater sample sizes will be required in cases where SGS is weaker than for our simulated population, for example, in species with effective pollen/seed dispersal mechanisms.