71 resultados para Polymer sponges
Resumo:
We report a simple one pot process for the preparation of lead sulfide (PbS) nanocrystals in the conjugated polymer poly (2-methoxy-5-(2'-ethyl-hexyloxy)-p-phenylene vinylene) (MEH-PPV), and we demonstrate electronic coupling between the two components.
Resumo:
Piezoelectric polymers have been used to form the basis of dynamic strain gauges for the detection of stress waves. The linearity of response was tested using a split Hopkinson pressure bar arrangement. The results obtained illustrate the effectiveness of piezoelectric film strain gauges in the measurement of axial stress waves.
Resumo:
Changes in molecular motion in blends of PEO-PVPh have been studied using measurements of C-13 T-1 rho relaxation times. C-13 T-1 rho relaxation has been confirmed as arising from spin-lattice interactions by observation of the variation in T-1 rho with rf field strength and temperature. In the pure homopolymers a minimum in T-1 rho is observed at ca. 50 K above the glass transition temperatures detected by DSC. After blending, the temperature of the minimum in T-1 rho for PEO increased, while that for PVPh decreased, however, the minima, which correspond to the temperatures where the average correlation times for reorientation are close to 3.1 mu s, are separated by 45 K (in a 45% PEO-PVPh blend). These phenomena are explained in terms of the local nature of T-1 rho measurements. The motions of the individual homopolymer chains are only partially coupled in the blend. A short T-1 rho has been observed for protonated aromatic carbons, and assigned to phenyl rings undergoing large-angle oscillatory motion, The effects of blending, and temperature, on the proportion of rings undergoing oscillatory motion are analyzed.
Resumo:
We propose a model for permeation in oxide coated gas barrier films. The model accounts for diffusion through the amorphous oxide lattice, nano-defects within the lattice, and macro-defects. The presence of nano-defects indicate the oxide layer is more similar to a nano-porous solid (such as zeolite) than silica glass with respect to permeation properties. This explains why the permeability of oxide coated polymers is much greater, and the activation energy of permeation much lower, than values expected for polymers coated with glass. We have used the model to interpret permeability and activation energies measured for the inert gases (He, Ne and Ar) in evaporated SiOx films of varying thickness (13-70 nm) coated on a polymer substrate. Atomic force and scanning electron microscopy were used to study the structure of the oxide layer. Although no defects could be detected by microscopy, the permeation data indicate that macro-defects (>1 nm), nano-defects (0.3-0.4 nm) and the lattice interstices (<0.3 nm) all contribute to the total permeation. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
The Oscillatory baffled reactor (OBR) can be used to produce particles with controlled size and morphology, in batch or continuous flow. This is due to the effect of the superimposed oscillations that radially mixes fluid but still allows plug-flow (or close to plug flow) behaviour in a continuous system. This mixing, combined with a close to a constant level of turbulence intensity in the reactor, leads to tight droplet and subsequent product particle size distributions. By applying population balance equations together with experimental droplet size distributions, breakage rates of droplets can be determined and this is a useful tool for understanding the product engineering in OBRs. (C) 2002 Elsevier Science B.V All rights reserved.
Resumo:
An experimental study has been carried out to characterise the performance of polymer stabilisers, partially hydrolysed polyvinyl acetate (PVAc), used in suspension polymerisation processes. The stabilisers are ranked by their ability to stabilise the dispersion characterised by the median coalescence time of a single drop with its homophase at a planar liquid/liquid interface. Results show that the stability of the dispersion relates closely to the molecular properties of the PVAcs. Other conditions being equal, PVAcs with higher molecular weights or lower degrees of hydrolysis can better stabilise a liquid-liquid dispersion. The stability of the dispersion also depends strongly on where the PVAc resides. The presence of a PVAc in the dispersed phase significantly reduces stability. Consistent with results reported in the literature, considerable scatter has been observed on the coalescence times of identical drops under the same conditions. An explanation for the scatter is also proposed in the paper, based on the classical Reynolds model for film thinning. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Two polymer-montmorillonite (MMT) nanocomposites have been synthesized by in situ intercalative polymerization. The styrene monomer is intercalated into the interlayer space of organically modified MMT, a layered clay mineral. Upon the intercalation, the complex is subsequently polymerized in the confinement environment of the interlayer space with a free radical initiator, 2,2-azobis isobutyronitrile. The aniline monomer is also intercalated and then polymerized within the interlayer space of sodium- and copper-MMT initiated by ammonium peroxodisulphate and interlayer copper cations respectively. X-ray diffraction indicates that the MMT layers are completely dispersed in the polystyrene matrix and an exfoliated structure has been obtained. The resulting polyaniline-MMT nanocomposites show a highly ordered structure of a single polyaniline layer stacked with the MMT layers. Fourier transform infrared spectra further confirm the intercalation and formation of both polymer-MMT nanocomposites.
Resumo:
Ultrasonic speed of propagation and attenuation were investigated as a function of absorbed radiation dose in PAG and MAGIC polymer gel dosimeters. Both PAG and MAGIC gel dosimeters displayed a dependence of ultrasonic parameters on absorbed dose with attenuation displaying significant changes in the dose range investigated. The ultrasonic attenuation dose sensitivity at 4 MHz in MAGIC gels was determined to be 4.7 +/- 0.3 dB m(-1) Gy(-1) and for PAG 3.9 +/- 0.3 dB m(-1) Gy(-1). Ultrasonic speed dose sensitivities were 0.178 +/- 0.006 m s(-1) Gy(-1) for MAGIC gel and -0.44 +/- 0.02 m s(-1) Gy(-1) for PAG. Density and compressional elastic modulus were investigated to explain the different sensitivities of ultrasonic speed to radiation for PAG and MAGIC gels. The different sensitivities were found to be due to differences in the compressional elastic modulus as a function of dose for the two formulations. To understand the physical phenomena underlying the increase in ultrasonic attenuation with dose, the viscoelastic properties of the gels were studied. Results suggest that at ultrasonic frequencies, attenuation in polymer gel dosimeters is primarily due to volume viscosity. It is concluded that ultrasonic attenuation significantly increases with absorbed dose. Also, the ultrasonic speed in polymer gel dosimeters is affected by changes in dosimeter elastic modulus that are likely to be a result of polymerization. It is suggested that ultrasound is a sufficiently sensitive technique for polymer gel dosimetry.
Resumo:
Ultrasonic absorption in polymer gel dosimeters was investigated. An ultrasonic interferometer was used to study the frequency (f) dependence of the absorption coefficient (alpha) in a polyacrylamide gel dosimeter (PAG) in the frequency range 5-20 MHz. The frequency dependence of ultrasonic absorption deviated from that of an ideal viscous fluid. The presence of relaxation mechanisms was evidenced by the frequency dependence of alpha/f(2) and the dispersion in ultrasonic velocity. It was concluded that absorption in polymer gel dosimeters is due to a number of relaxation processes which may include polymer-solvent interactions as well as relaxation due to motion of polymer side groups. The dependence of ultrasonic absorption on absorbed dose and formulation was also investigated in polymer gel dosimeters as a function of pH and chemical composition. Changes in dosimeter pH and chemical composition resulted in a variation in ultrasonic dose response curves. The observed dependence on pH was considered to be due to pH induced modifications in the radiation yield while changes in chemical composition resulted in differences in polymerisation kinetics. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Flows of complex fluids need to be understood at both macroscopic and molecular scales, because it is the macroscopic response that controls the fluid behavior, but the molecular scale that ultimately gives rise to rheological and solid-state properties. Here the flow field of an entangled polymer melt through an extended contraction, typical of many polymer processes, is imaged optically and by small-angle neutron scattering. The dual-probe technique samples both the macroscopic stress field in the flow and the microscopic configuration of the polymer molecules at selected points. The results are compared with a recent tube model molecular theory of entangled melt flow that is able to calculate both the stress and the single-chain structure factor from first principles. The combined action of the three fundamental entangled processes of reptation, contour length fluctuation, and convective constraint release is essential to account quantitatively for the rich rheological behavior. The multiscale approach unearths a new feature: Orientation at the length scale of the entire chain decays considerably more slowly than at the smaller entanglement length.
Resumo:
Published polymer distribution data for aqueous poly(ethylene glycol)/dextran mixtures have been reassessed to illustrate the feasibility of their quantitative characterization in terms of the Flory-Huggins theory of polymer thermodynamics. Phase diagrams predicted by this characterization procedure provide better descriptions of the experimental data than those based on an earlier, oversimplified treatment in similar terms. (C) 2003 Wiley Periodicals, Inc.
Resumo:
We have developed a new non-polar synthesis for lead sulfide (PbS) quantum-cubes in the conjugated polymer poly-2-methoxy, 5-(2-ethyl-hexyloxy-p-phenylenevinylene) MEH-PPV. The conducting polymer acts to template and control the quantum-cube growth. Transmission electron microscopy of the composites has shown a bimodal distribution of cube sizes between 5 and 15 nm is produced with broad optical absorption from 300 to 650 nm. Photoluminescence suggests electronic coupling between the cubes and the conducting polymer matrix. The synthesis and initial characterization are presented in this paper. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
The biosynthetic origins of the isocyanide and isothiocyanate functional groups in the marine sponge metabolites diisocyanoadociane (1), 9-isocyanopupukeanane (10) and 9- isothiocyanatopupukeanane (11) are probed by the use of [C-14]-labelled precursor experiments. Incubation of the sponge Amphimedon terpenensis with [C-14]-labelled thiocyanate resulted in radioactive diisocyanoadociane ( 1) in which the radiolabel is specifically associated with the isocyanide carbons. As expected, cyanide and thiocyanate were confirmed as precursors to the pupukeananes 10 and 11 in the sponge Axinyssa n. sp.; additionally these precursors labelled 2-thiocyanatoneopupukeanane ( 12) in this sponge. To probe whether isocyanide-isothiocyanate interconversions take place at the secondary metabolite level, the advanced precursor bisisothiocyanate 17 was supplied to A. terpenensis, but did not result in significant labelling in the natural product isocyanide 1. In contrast, in the sponge Axinyssa n. sp., feeding of [C-14]-9-isocyanopupukeanane (10) resulted in isolation of radiolabelled 9- isothiocyanatopupukeanane 11, while the feeding of [C-14]-11 resulted in labelled isocyanide 10. These results show conclusively that isocyanides and isothiocyanates are interconverted in the sponge Axinyssa n. sp., and confirm the central role that thiocyanate occupies in the terpene metabolism of this sponge.