32 resultados para Plate Elements
Resumo:
Trace element concentrations and combined Sr- and Nd-isotope compositions were determined on stromatolitic carbonates (microbialites) from the 2.52 Ga Campbellrand carbonate platform (South Africa). Shale-normalised rare earth element and yttrium patterns of the ancient samples are similar to those of modern seawater in having positive La and Y anomalies and in being depleted in light rare earth elements. In contrast to modem seawater (and microbialite proxies), the 2.52 Ga samples lack a negative Ce anomaly but possess a positive Eu anomaly. These latter trace element characteristics are interpreted to reflect anoxic deep ocean waters where, unlike today, hydrothermal Fe input was not oxidised, and scavenged and rare earth elements were not coprecipitated with Fe-oxyhydroxides. The persistence of a positive Eu anomaly in relatively shallow Campbellrand platform waters indicates a dramatic reversal from hydrothermally dominated (Archaean) to continental erosion-dominated (Phanerozoic) rare earth element flux ratio. The dominant hydrothermal input is also expressed in the initial Sr- and Nd-isotope ratios. There is collinear variation in Sr-Nd systematics, which range from primitive values (Sr-87/Sr-86 of 0.702386 and epsilon (Nd) of +2.1) to more evolved crustal ratios. Mixing calculations show that the range in trace element ratios (e.g., Y/Ho) and initial isotope ratios is not a result of contamination by trapped sediment, but that the chemical band isotopic variation reflects carbonate deposition in an environment where different water masses mixed. Calculated Nd flux ratios yield a hydrothermal input into the 2.52 Ga oceans one order of magnitude larger than continental input. Such a change in flux ratio most likely required substantially reduced continental inputs, which could, in turn, reflect a plate tectonic causation (e.g., reduced topography or expansion of epicontinental seas). Copyright (C) 2001 Elsevier Science Ltd.
Resumo:
It has long been believed that resistance training is accompanied by changes within the nervous system that play an important role in the development of strength. Many elements of the nervous system exhibit the potential for adaptation in response to resistance training, including supraspinal centres, descending neural tracts, spinal circuitry and the motor end plate connections between motoneurons and muscle fibres. Yet the specific sites of adaptation along the neuraxis have seldom been identified experimentally, and much of the evidence for neural adaptations following resistance training remains indirect. As a consequence of this current lack of knowledge, there exists uncertainty regarding the manner in which resistance training impacts upon the control and execution of functional movements. We aim to demonstrate that resistance training is likely to cause adaptations to many neural elements that are involved in the control of movement, and is therefore likely to affect movement execution during a wide range of tasks. We review a small number of experiments that provide evidence that resistance training affects the way in which muscles that have been engaged during training are recruited during related movement tasks. The concepts addressed in this article represent an important new approach to research on the effects of resistance training. They are also of considerable practical importance, since most individuals perform resistance training in the expectation that it will enhance their performance in-related functional tasks.
Resumo:
We develop a new iterative filter diagonalization (FD) scheme based on Lanczos subspaces and demonstrate its application to the calculation of bound-state and resonance eigenvalues. The new scheme combines the Lanczos three-term vector recursion for the generation of a tridiagonal representation of the Hamiltonian with a three-term scalar recursion to generate filtered states within the Lanczos representation. Eigenstates in the energy windows of interest can then be obtained by solving a small generalized eigenvalue problem in the subspace spanned by the filtered states. The scalar filtering recursion is based on the homogeneous eigenvalue equation of the tridiagonal representation of the Hamiltonian, and is simpler and more efficient than our previous quasi-minimum-residual filter diagonalization (QMRFD) scheme (H. G. Yu and S. C. Smith, Chem. Phys. Lett., 1998, 283, 69), which was based on solving for the action of the Green operator via an inhomogeneous equation. A low-storage method for the construction of Hamiltonian and overlap matrix elements in the filtered-basis representation is devised, in which contributions to the matrix elements are computed simultaneously as the recursion proceeds, allowing coefficients of the filtered states to be discarded once their contribution has been evaluated. Application to the HO2 system shows that the new scheme is highly efficient and can generate eigenvalues with the same numerical accuracy as the basic Lanczos algorithm.
Resumo:
We report on a proof of principle demonstration of an optically driven micromachine element. Optical angular momentum is transferred from a circularly polarized laser beam to a birefringent particle confined in an optical tweezers trap. The optical torque causes the particle to spin at up to 350 Hz, and this torque is harnessed to drive an optically trapped microfabricated structure. We describe a photolithographic method for producing the microstructures and show how a light driven motor could be used in a micromachine system. (C) 2001 American Institute of Physics.
Resumo:
Trace elements can have a significant effect on the processing and properties of aluminium alloys, including sintered alloys. As little as 0.07 wt% (100 ppm) lead, tin or indium promotes sintering in an Al-Zn-Mg-Cu alloy produced from mixed elemental powders. This is a liquid phase sintering system and thin liquid films form uniformly throughout the alloy in the presence of the trace elements, but liquid pools develop in their absence. Analytical transmission electron microscopy indicates that the trace elements are confined to the interparticle and grain boundary regions. The sintering enhancement is attributed to the segregation of the microalloying addition to the liquid-vapour interface. Because the microalloying elements have a low surface tension, they lower the effective surface tension of the liquid. This reduces the wetting angle and extends the spreading of the liquid through the matrix. An improvement in sintering results. (C) 2001 Acta Materialia Inc. Published by Elsevier Science Ltd. All rights reserved.
Resumo:
Thermally unaltered conodont elements, brachiopods. and vertebrates were analyzed with reverse phase high profile liquid chromatography to locate and quantify amino acid remnants of the original organic matrix in the fossils. No consistent similarities in amino acid content were found in conodont taxa. and criteria based on organic residues appear to have no taxonomic significance in the fossils tested from these localities. However, hydroxyproline. an amino acid that is found in the collagen molecules of animals. as well as in the glycoproteins in the cell walls and reproductive tissues of certain plants, is represented in most taxa. The organic matter retained in the impermeable crowns of conodont elements might have been derived originally from a form of collagen. Biochemical analyses. correlated with histochemical tests, demonstrate that organic matter is an integral part of the hyaline tissue of the element crown and not the result of surface contamination. Tests of a range of vertebrate and invertebrate fossil hard tissues produced similar results. The analyses indicate that hyaline tissue in the conodont element crown is not a form of vertebrate enamel. which contains no collagen. Albid tissue. with little or no organic content. is not a form of vertebrate bone or dentine, both based on collagen and low in mineral. Although these results do not help to determine the phylogenetic affinities of conodont animals, they indicate teat conodont elements do not contain hard tissues characteristic of vertebrate animals.
Resumo:
A field matching method is described to analyze a recessed circular cavity radiating into a radial waveguide. Using the wall impedance approach, the analysis is divided into two separate problems of the cavity and its external environment. Based on this analysis, a computer algorithm is developed for determining wall admittances as seen at the edge of the patch in the cavity, the radial admittance matrix for the two-probe feed arrangement, and the input impedance as observed from the coaxial line feeding the cavity. This algorithm is tested against the general-purpose Hewlett-Packard finite-element High Frequency Structure Simulator as well as against measured results. Good agreement in all considered cases is noted.
Resumo:
Two of the best understood somatic cell mRNA cytoplasmic trafficking elements are those governing localization of beta-actin and myelin basic protein mRNAs. These cis-acting elements bind the trans-acting factors fibroblast ZBP-1 and hnRNP A2, respectively. It is not known whether these elements fulfil other roles in mRNA metabolism. To address this question we have used Edman sequencing and western blotting to identify six rat brain proteins that bind the beta-actin element (zipcode). All are known RNA-binding proteins and differ from ZBP-1. Comparison with proteins that bind the hnRNP A2 and AU-rich response elements, A2RE/A2RE11 and AURE, showed that AURE and zipcode bind a similar set of proteins that does not overlap with those that bind A2RE11. The zipcode-binding protein, KSRP, and hnRNP A2 were selected for further study and were shown by confocal immunolluorescence microscopy to have similar distributions in the central nervous system, but they were found in largely separate locations in cell nuclei. In the cytoplasm of cultured oligodendrocytes they were segregated into separate populations of cytoplasmic granules. We conclude that not only may there be families of trans-acting factors for the same cis-acting element, which are presumably required at different stages of mRNA processing and metabolism, but independent factors may also target different and multiple RNAs in the same cell.
Resumo:
The dimethylsulfoxide (DMSO) reductase family of molybdenum enzymes is a large and diverse group that is found in bacteria and archaea. These enzymes are characterised by a bis(molybdopterin guanine dinucleotide)Mo form of the molybdenum cofactor, and they are particularly important in anaerobic respiration including the dissimilatory reduction of certain toxic oxoanions. The structural and phylogenetic relationship between the proteins of this family is discussed. High-resolution crystal structures of enzymes of the DMSO reductase family have revealed a high degree of similarity in tertiary structure. However, there is considerable variation in the structure of the molybdenum active site and it seems likely that these subtle but important differences lead to the great diversity of function seen in this family of enzymes. This diversity of catalytic capability is associated with several distinct pathways of electron transport.
Resumo:
We present whole-rock and zircon rare earth element (REE) data from two early Archaean gneisses (3.81 Ga and 3.64 Ga) from the Itsaq gneiss complex, south-west Greenland. Both gneisses represent extremely rare examples of unaltered, fresh and relatively undeformed igneous rocks of such antiquity. Cathodoluminescence imaging of their zircons indicates a single crystallisation episode with no evidence for either later metamorphic and/or anatectic reworking or inheritance of earlier grains. Uniform, single-population U/Pb age data confirm the structural simplicity of these zircons. One sample, a 3.64 Ga granodioritic gneiss from the Gothabsfjord, yields a chondrite-normalised REE pattern with a positive slope from La to Lu as well as substantial positive Ce and slight negative Eu anomalies, features generally considered to be typical of igneous zircon. In contrast, the second sample, a 3.81 Ga tonalite from south of the Isua Greenstone Belt, has variable but generally much higher light REE abundances, with similar middle to heavy REE. Calculation of zircon/melt distribution coefficients (D-REE(zircon/melt)) from each sample yields markedly different values for the trivalent REE (i.e. Ce and Eu omitted) and simple application of one set of D-REE(zircon/melt) to model the melt composition for the other sample yields concentrations that are in error by up to two orders of magnitude for the light REE (La-Nd). The observed light REE overabundance in the 3.81 Ga tonalite is a commonly observed feature in terrestrial zircons for which a number of explanations ranging from lattice strain to disequilibrium crystallisation have been proposed and are further investigated herein. Regardless of the cause of light REE overabundance, our study shows that simple application of zircon/melt distribution coefficients is not an unambiguous method for ascertaining original melt composition. In this context, recent studies that use REE data to claim that > 4.3 Ga Hadean detrital zircons originally crystallised from an evolved magma, in turn suggesting the operation of geological processes in the early Earth analogous to those of the present day (e.g. subduction and melting of hydrated oceanic crust), must be regarded with caution. Indeed, comparison of terrestrial Hadean and > 3.9 Ga lunar highland zircons shows remarkable similarities in the light REE, even though subduction processes that have been used to explain the terrestrial zircons have never operated on the Moon. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
We use published and new trace element data to identify element ratios which discriminate between arc magmas from the supra-subduction zone mantle wedge and those formed by direct melting of subducted crust (i.e. adakites). The clearest distinction is obtained with those element ratios which are strongly fractionated during refertilisation of the depleted mantle wedge, ultimately reflecting slab dehydration. Hence, adakites have significantly lower Pb/Nd and B/Be but higher Nb/Ta than typical arc magmas and continental crust as a whole. Although Li and Be are also overenriched in continental crust, behaviour of Li/Yb and Be/Nd is more complex and these ratios do not provide unique signatures of slab melting. Archaean tonalite-trondhjemite-granodiorites (TTGs) strongly resemble ordinary mantle wedge-derived arc magmas in terms of fluid-mobile trace element content, implying that they-did not form by slab melting but that they originated from mantle which was hydrated and enriched in elements lost from slabs during prograde dehydration. We suggest that Archaean TTGs formed by extensive fractional crystallisation from a mafic precursor. It is widely claimed that the time between the creation and subduction of oceanic lithosphere was significantly shorter in the Archaean (i.e. 20 Ma) than it is today. This difference was seen as an attractive explanation for the presumed preponderance of adakitic magmas during the first half of Earth's history. However, when we consider the effects of a higher potential mantle temperature on the thickness of oceanic crust, it follows that the mean age of oceanic lithosphere has remained virtually constant. Formation of adakites has therefore always depended on local plate geometry and not on potential mantle temperature.
Resumo:
The technique of permanently attaching piezoelectric transducers to structural surfaces has demonstrated great potential for quantitative non-destructive evaluation and smart materials design. For thin structural members such as composite laminated plates, it has been well recognized that guided Lamb wave techniques can provide a very sensitive and effective means for large area interrogation. However, since in these applications multiple wave modes are generally generated and the individual modes are usually dispersive, the received signals are very complex and difficult to interpret. An attractive way to deal with this problem has recently been introduced by applying piezoceramic transducer arrays or interdigital transducer (IDT) technologies. In this paper, the acoustic wave field in composite laminated plates excited by piezoceramic transducer arrays or IDT is investigated. Based on dynamic piezoelectricity theory, a discrete layer theory and a multiple integral transform method, an analytical-numerical approach is developed to evaluate the input impedance characteristics of the transducer and the surface velocity response of the plate. The method enables the quantitative evaluation of the influence of the electrical characteristics of the excitation circuit, the geometric and piezoelectric properties of the transducer array, and the mechanical and geometrical features of the laminate. Numerical results are presented to validate the developed method and show the ability of single wave mode selection and isolation. The results show that the interaction between individual elements of the piezoelectric array has a significant influence on the performance of the IDT, and these effects can not be neglected even in the case of low frequency excitation. It is also demonstrated that adding backing materials to the transducer elements can be used to improve the excitability of specific wave modes. (C) 2002 Elsevier Science Ltd. All rights reserved.