70 resultados para Plant resistance


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The I-3 gene from the wild tomato species Lycopersicon pennellii confers resistance to race 3 of the devastating vascular wilt pathogen Fusarium oxysporum f. sp. lycopersici. As an initial step in a positional cloning strategy for the isolation of I-3, we converted restriction fragment length polymorphism and conserved orthologue set markers, known genes and a resistance gene analogue (RGA) mapping to the I-3 region into PCR-based sequence characterised amplified region (SCAR) and cleaved amplified polymorphic sequence (CAPS) markers. Additional PCR-based markers in the I-3 region were generated using the randomly amplified DNA fingerprinting (RAF) technique. SCAR, CAPS and RAF markers were used for high-resolution mapping around the I-3 locus. The I-3 gene was localised to a 0.3-cM region containing a RAF marker, eO6, and an RGA, RGA332. RGA332 was cloned and found to correspond to a putative pseudogene with at least two loss-of-function mutations. The predicted pseudogene belongs to the Toll interleukin-1 receptor-nucleotide-binding site-leucine-rich-repeat sub-class of plant disease resistance genes. Despite the presence of two RGA332 homologues in L. esculentum, DNA gel blot and PCR analysis suggests that no other homologues are present in lines carrying I-3 that could be alternative candidates for the gene.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bacterial artificial chromosome (BAC) libraries have been widely used in different aspects of genome research. In this paper we report the construction of the first mungbean (Vigna radiata L. Wilczek) BAC libraries. These BAC clones were obtained from two ligations and represent an estimated 3.5 genome equivalents. This correlated well with the screening of nine random single-copy restriction fragment length polymorphism probes, which detected on average three BACs each. These mungbean clones were successfully used in the development of two PCR-based markers linked closely with a major locus conditioning bruchid (Callosobruchus chinesis) resistance. These markers will be invaluable in facilitating the introgression of bruchid resistance into breeding programmes as well as the further characterisation of the resistance locus.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The relative resistance levels of three different populations of mulberry silkworm, Bombyx mori L. to Bacillus thuringiensis (Bt) has been studied. All three populations (two Australian and one Indonesian) were observed for similar characteristics including 3rd instar larval mortality at 24, 48, 72 and 96 h after treatment (HAT), LD50 ratio and probit mortality. Among the Australian two populations, the QuBill (yellow coloured, oval shaped cocoon) population showed higher larval mortality to Bt toxicity compared to the QuBite (white coloured, oval shaped cocoon) population. When all the populations were compared, the Insab (Indonesian population with white Coloured, peanut shaped cocoon) showed lower larval mortality and highest LD50 ratio up to 48 HAT. The Insab population also showed a 24 It longer incubation/latent period prior to the start Of Mortality.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Phytophthora root rot, caused by Phytophthora medicaginis, is a major limitation to lucerne ( Medicago sativa L.) production in Australia and North America. Quantitative trait loci (QTLs) involved in resistance to P. medicaginis were identified in a lucerne backcross population of 120 individuals. A genetic linkage map was constructed for tetraploid lucerne using 50 RAPD ( randomly amplified polymorphic DNA), 104 AFLP (amplified fragment length polymorphism) markers, and one SSR ( simple sequence repeat or microsatellite) marker, which originated from the resistant parent (W116); 13 markers remain unlinked. The linkage map contains 18 linkage groups covering 2136.5 cM, with an average distance of 15.0 cM between markers. Four of the linkage groups contained only either 2 or 3 markers. Using duplex markers and repulsion phase linkages the map condensed to 7 homology groups and 2 unassigned linkage groups. Three regions located on linkage groups 2, 14, and 18, were identified as associated with root reaction and the QTLs explained 6 - 15% of the phenotypic variation. The research also indicates that different resistance QTLs are involved in conferring resistance in different organs. Two QTLs were identified as associated with disease resistance expressed after inoculation of detached leaves. The marker, W11-2 on group 18, identified as associated with root reaction, contributed 7% of the phenotypic variation in leaf response in our population. This marker appears to be linked to a QTL encoding a resistance factor contributing to both root and leaf reaction. One other QTL, not identified as associated with root reaction, was positioned on group 1 and contributed to 6% of the variation. This genetic linkage map provides an entry point for future molecular-based improvement of lucerne in Australia, and markers linked to the QTLs we have reported should be useful for marker-assisted selection for partial resistance to P. medicaginis in lucerne.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

1 The herbivorous bug Heteropsylla cubana Crawford (Homoptera: Psyllidae) is a pest of the cattle fodder crop Leucaena (Leguminosae: Mimosoideae). The interaction between the psyllid and three varieties of its Leucaena host plant was investigated in relation to the apparent resistance of some Leucaena varieties (Leucaena leucocephala, Leucaena pallida and their hybrids) to attack. 2 Field trials demonstrated that adult psyllids distinguished among the different varieties of Leucaena over a distance, and were attracted to L. leucocephala in significantly higher numbers than to L. pallida or to the hybrid. Pesticide treatment increased the attractiveness of Leucaena plants, even of those deemed to be psyllid resistant. Numbers of psyllid eggs and nymphs, sampled in the field, reflect the arrival rates of adults at the three plant varieties. 3 Wavelength reflectance data of the three Leucaena varieties were not significantly different from one another, suggesting that psyllids cannot discriminate among the three plants using brightness or wavelength cues. There was a differential release of caryophyllene among the three varieties. Release of caryophyllene in L. leucocephala and the hybrid appeared to be influenced by environmental conditions. 4 Experiments demonstrated that caryophyllene (at least on its own) did not influence the behaviour of leucaena psyllids in relation to leucaena plants. 5 The results suggest that host plant volatiles cannot be dismissed as significant in the interaction between the leucaena psyllid and its Leucaena host plants. Further avenues for investigation are recommended and these are related to novel ways of understanding resistance in insect plant inter-relationships.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To identify transcription factors (TFs) involved in jasmonate (JA) signaling and plant defense, we screened 1,534 Arabidopsis (Arabidopsis thaliana) TFs by real-time quantitative reverse transcription-PCR for their altered transcript at 6 h following either methyl JA treatment or inoculation with the incompatible pathogen Alternaria brassicicola. We identified 134 TFs that showed a significant change in expression, including many APETALA2/ethylene response factor (AP2/ERF), MYB, WRKY, and NACTF genes with unknown functions. Twenty TF genes were induced by both the pathogen and methyl JA and these included 10 members of the AP2/ERF TF family, primarily from the B1a and B3 subclusters. Functional analysis of the B1a TF AtERF4 revealed that AtERF4 acts as a novel negative regulator of JA-responsive defense gene expression and resistance to the necrotrophic fungal pathogen Fusarium oxysporum and antagonizes JA inhibition of root elongation. In contrast, functional analysis of the B3 TF AtERF2 showed that AtERF2 is a positive regulator of JA-responsive defense genes and resistance to F. oxysporum and enhances JA inhibition of root elongation. Our results suggest that plants coordinately express multiple repressor-and activator-type AP2/ERFs during pathogen challenge to modulate defense gene expression and disease resistance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Glutamate dehydrogenase (GDH; EC 1.4.1.2-1.4.1.4) catalyses in vitro the reversible amination of 2-oxoglutarate to glutamate. In vascular plants the in vivo direction(s) of the GDH reaction and hence the physiological role(s) of this enzyme remain obscure. A phylogenetic analysis identified two clearly separated groups of higher-plant GDH genes encoding either the alpha- or beta-subunit of the GDH holoenzyme. To help clarify the physiological role(s) of GDH, tobacco (Nicotiana tabacum L.) was transformed with either an antisense or sense copy of a beta-subunit gene, and transgenic plants recovered with between 0.5- and 34-times normal leaf GDH activity. This large modulation of GDH activity (shown to be via alteration of beta-subunit levels) had little effect on leaf ammonium or the leaf free amino acid pool, except that a large increase in GDH activity was associated with a significant decrease in leaf Asp (similar to 51%, P=0.0045). Similarly, plant growth and development were not affected, suggesting that a large modulation of GDH beta-subunit titre does not affect plant viability under the ideal growing conditions employed. Reduction of GDH activity and protein levels in an antisense line was associated with a large increase in transcripts of a beta-subunit gene, suggesting that the reduction in beta-subunit levels might have been due to translational inhibition. In another experiment designed to detect post-translational up-regulation of GDH activity, GDH over-expressing plants were subjected to prolonged dark-stress. GDH activity increased, but this was found to be due more likely to resistance of the GDH protein to stress-induced proteolysis, rather than to post-translational up-regulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A yeast cDNA expression library was screened to identify genes and cellular processes that influence fungal sensitivity to a plant antimicrobial peptide. A plasmid-based, GAL1 promoter-driven yeast cDNA expression library was introduced into a yeast genotype susceptible to the antimicrobial peptide MiAMP1 purified from Macadamia integrifolia. Following a screen of 20,000 cDNAs, three yeast cDNAs were identified that reproducibly provided transformants with galactose-dependent resistance to MiAMP1. These cDNAs encoded a protein of unknown function, a component (VMA11) of the vacuolar H+-ATPase and a component (cytochrome c oxidase subunit VIa) of the mitochondrial electron transport chain, respectively. To identify genes that increased sensitivity to MiAMP1, the yeast cDNA expression library was introduced into a yeast mutant with increased resistance to MiAMP1. From 11,000 cDNAs screened, two cDNA clones corresponding to a ser/thr kinase and a ser/thr phosphatase reproducibly increased MiAMP1 susceptibility in the mutant in a galactose-dependent manner. Deletion mutants were available for three of the five genes identified but showed no change in their sensitivity to MiAMP1, indicating that these genes could not be detected by screening of yeast deletion mutant libraries. Yeast cDNA expression library screening therefore provides an alternative approach to gene deletion libraries to identify genes that can influence the sensitivity of fungi to plant antimicrobial peptides.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Plant defence and senescence share many similarities as evidenced by extensive co-regulation of many genes during these responses. To better understand the nature of signals that are common to plant defence and senescence, we studied the regulation of SEN1 encoding a senescence-associated protein during plant defence responses in Arabidopsis. Pathogen inoculations and treatments with defence-related chemical signals, salicylic acid and methyl jasmonate induced changes in SEN1 transcript levels. Analysis of transgenic plants expressing the SEN1 promoter fused to uidA reporter gene confirmed the responsiveness of the SEN1 promoter to defence- and senescence-associated signals. Expression analysis of SEN1 in a number of defence signalling mutants indicated that activation of this gene by pathogen occurs predominantly via the salicylic and jasmonic acid signalling pathways, involving the functions of EDS5, NPR1 and JAR1 In addition, in the absence of pathogen challenge, the cpr5/hys1 mutant showed elevated SEN1 expression and displayed an accelerated senescence response following inoculation with the necrotrophic fungal pathogen Fusarhan oxysporum. Although the analysis of the sen1-1 knock-out mutant did not reveal any obvious role for this gene in defence or senescence-associated events, our results presented here show that SEN1 is regulated by signals that link plant defence and senescence responses and thus represents a useful marker gene to study the overlap between these two important physiological events. (c) 2005 Elsevier SAS. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Phytochemicals have provided an abundant and effective source of therapeutics for the treatment of cancer. Here we describe the characterization of a novel plant toxin, persin, with in vivo activity in the mammary gland and a p53-, estrogen receptor-, and Bcl-2-independent mode of action. Persin was previously identified from avocado leaves as the toxic principle responsible for mammary gland-specific necrosis and apoptosis in lactating livestock. Here we used a lactating mouse model to confirm that persin has a similar cytotoxicity for the lactating mammary epithelium. Further in vitro studies in a panel of human breast cancer cell lines show that persin selectively induces a G(2)-M cell cycle arrest and caspase-dependent apoptosis in sensitive cells. The latter is dependent on expression of the BH3-only protein Bim. Bim is a sensor of cytoskeletal integrity, and there is evidence that unique structure of the compound, persin could represent a novel class of microtubule-targeting agent with potential specificity for breast cancers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The sulfonylureas and imidazolinones are potent commercial herbicide families. They are among the most popular choices for farmers worldwide, because they are nontoxic to animals and highly selective. These herbicides inhibit branched-chain amino acid biosynthesis in plants by targeting acetohydroxyacid synthase (AHAS, EC 2.2.1.6). This report describes the 3D structure of Arabidopsis thaliana AHAS in complex with five sulfonylureas (to 2.5 angstrom resolution) and with the imidazolinone, imazaquin (IQ; 2.8 angstrom). Neither class of molecule has a structure that mimics the substrates for the enzyme, but both inhibit by blocking a channel through which access to the active site is gained. The sulfonylureas approach within 5 angstrom of the catalytic center, which is the C2 atom of the cofactor thiamin diphosphate, whereas IQ is at least 7 angstrom from this atom. Ten of the amino acid residues that bind the sulfonylureas also bind IQ. Six additional residues interact only with the sulfonylureas, whereas there are two residues that bind IQ but not the sulfonylureas. Thus, the two classes of inhibitor occupy partially overlapping sites but adopt different modes of binding. The increasing emergence of resistant weeds due to the appearance of mutations that interfere with the inhibition of AHAS is now a worldwide problem. The structures described here provide a rational molecular basis for understanding these mutations, thus allowing more sophisticated AHAS inhibitors to be developed. There is no previously described structure for any plant protein in complex with a commercial herbicide.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Heterotrimeric G proteinshave been previously linked to plant defense; however a role for the G beta gamma dimer in defense signaling has not been described to date. Using available Arabidopsis (Arabidopsis thaliana) mutants lacking functional G alpha or G beta subunits, we show that defense against the necrotrophic pathogens Alternaria brassicicola and Fusarium oxysporum is impaired in G beta- deficient mutants while G alpha-deficient mutants show slightly increased resistance compared to wild-type Columbia ecotype plants. In contrast, responses to virulent (DC3000) and avirulent (JL1065) strains of Pseudomonas syringae appear to be independent of heterotrimeric G proteins. The induction of a number of defense-related genes in G beta-deficient mutants were severely reduced in response to A. brassicicola infection. In addition, G beta-deficient mutants exhibit decreased sensitivity to a number of methyl jasmonate- induced responses such as induction of the plant defensin gene PDF1.2, inhibition of root elongation, seed germination, and growth of plants in sublethal concentrations of methyl jasmonate. In all cases, the behavior of the G alpha- deficient mutants is coherent with the classic heterotrimeric mechanism of action, indicating that jasmonic acid signaling is influenced by the Gbg functional subunit but not by G alpha. We hypothesize that G beta gamma acts as a direct or indirect enhancer of the jasmonate signaling pathway in plants.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As resistance genes have been shown to contain conserved motifs and cluster in many plant genomes, the identification of resistance gene analogues can be used as a strategy for both the discovery of DNA markers linked to disease resistance loci and the map-based cloning of disease resistance genes. Sugarcane suffers from many important diseases and an analysis of resistance gene analogues offers a means to identify DNA markers linked to resistance loci. However, sugarcane has the most complex genome of any crop plant and initially it is important to understand the extent of resistance gene analogue diversity in the sugarcane genome before genetic analysis. We review herein how more than 100 expressed sequence tags with homology to different resistance genes have been identified in sugarcane with many mapped as single-dose restriction fragment length polymorphism markers. Importantly, some of these resistance gene analogues have been shown to be linked to disease resistance genes or disease quantitative trait loci. In an attempt to more efficiently analyse additional resistance gene analogues in sugarcane, we report on experiments aimed at investigating the molecular diversity of several resistance gene analogue families using a modified form of a technique termed Ecotilling. Using Ecotilling, we were able to rapidly detect single nucleotide polymorphisms in fragments amplified by PCR from four different resistance gene analogue families, SoRP1D, SoPTO, SoXa21 and SoHs1pro-1. An analysis of a diverse set of sugarcane varieties, including modern sugarcane cultivars and several S. officinarum and S. spontaneum clones, indicated that all amplicons, apart from SoHs1pro-1, contained significant polymorphism within the gene region studied. However, a comparison among these sugarcane clones, including between the parents of two sugarcane mapping populations, indicated that most polymorphisms were multi-dose, not single-dose, preventing their genetic map location or association with disease susceptibility or resistance from being determined.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fusarium wilt of tomato, caused by the fungal pathogen, Fusarium oxysporum f. sp. lycopersici (Fol), is an economically damaging disease that results in huge losses in Australia and other countries worldwide. The I-3 gene, which confers resistance to Fol race 3, has been described in wild tomato, Lycopersicon pennellii, accessions LA716 and PI414773. We are pursuing the isolation of I-3 from LA716 by map-based cloning. We have constructed a high-resolution map of the I-3 region and have identified markers closely flanking I-3 as well as markers co-segregating with I-3. In addition, construction of a physical map based on these markers has been initiated. This review describes the context of our research and our progress towards isolating the I-3 gene. It also describes some important practical outcomes of our work, including the development and use of a PCR-based marker for marker-assisted selection for I-3, and the finding that the I-3 gene from LA716 is different to that from PI1414773, which we have now designated I-7. Tomato varieties combining I-3 and I-7 have been developed and are currently being introduced into commercial production to further safeguard tomato crops against Fusarium wilt.