215 resultados para Perceptual speech analysis
Resumo:
Knowledge of differences in voice and speech characteristics between novice and professional broadcasters is essential for effective education of broadcast journalism students. Because newsreaders rely on optimal voice production, information pertaining to vocal hygiene is also important. The first aim of this study was to compare the voice and speech characteristics of professional newsreaders, student newsreaders and control participants. The second aim was to compare the awareness and use of vocal hygiene across these groups. Professional radio newsreaders, broadcast journalism students and two matched control groups were included in the study. Each participant recorded a news bulletin and completed a questionnaire on vocal hygiene. Data analysis of the recording included objective analysis and perceptual ratings by a panel of three judges. Significant student-professional differences were found. Compared to both the students and the control groups, the professional newsreaders had greater variation in speaking fundamental frequency, a faster rate of speech, fewer pronunciation errors and higher perceptual ratings on vocal quality, emphasis, continuity, phrasing and style of newsreading. Female professional newsreaders had a higher speaking fundamental frequency than both their control participants and the student newsreaders. Comparison of vocal hygiene awareness revealed few significant differences between any of the groups.
Resumo:
Two physiological assessments, electromagnetic articulography (EMA) and electropalatography (EPG), were used simultaneously to investigate the articulatory dynamics in an 18-year-old male with dysarthria 9 years following traumatic brain injury (TBI). Eight words consisting of /t, s, integral, k/ in word initial and word final positions were produced up to 10 times. A nonneurologically impaired male served as a control subject. Six parameters were analyzed using EMA: velocity, acceleration, deceleration, distance, duration, and motion path of tongue movements. Using EPG, the pattern and amount of tongue-to-palate contact and the duration of the closure/constriction phase of each consonant produced were assessed. Timing disturbances in the TBI speaker's speech were highlighted in perceptual assessments in the form of prolonged phonemes and a reduced speech rate. EMA analysis revealed that the approach and release phase durations of the consonant productions were within normal limits. Kinematic strategies such as decreased velocity and decreased distances traveled by the tongue, however, may have counterbalanced each other to produce these appropriate results. EPG examination revealed significantly longer closure/constriction phase periods, which may have contributed to the prolonged phonemes and reduced speech rate observed. The implications of these findings for the development of treatment programs for dysarthria subsequent to TBI will be highlighted.
Resumo:
Purpose: This pilot study explored the feasibility and effectiveness of an Internet-based telerehabilitation application for the assessment of motor speech disorders in adults with acquired neurological impairment. Method: Using a counterbalanced, repeated measures research design, 2 speech-language pathologists assessed 19 speakers with dysarthria on a battery of perceptual assessments. The assessments included a 19-item version of the Frenchay Dysarthria Assessment (FDA; P. Enderby, 1983), the Assessment of Intelligibility of Dysarthric Speech (K. M. Yorkston & D. R. Beukelman, 1981), perceptual analysis of a speech sample, and an overall rating of severity of the dysarthria. One assessment was conducted in the traditional face-to-face manner, whereas the other assessment was conducted using an online, custom-built telerehabilitation application. This application enabled real-time videoconferencing at 128 kb/s and the transfer of store-and-forward audio and video data between the speaker and speech-language pathologist sites. The assessment methods were compared using the J.M.Bland and D.G.Altman (1986, 1999) limits-of-agreement method and percentage level of agreement between the 2 methods. Results: Measurements of severity of dysarthria, percentage intelligibility in sentences, and most perceptual ratings made in the telerehabilitation environment were found to fall within the clinically acceptable criteria. However, several ratings on the FDA were not comparable between the environments, and explanations for these results were explored. Conclusions: The online assessment of motor speech disorders using an Internet-based telerehabilitation system is feasible. This study suggests that with additional refinement of the technology and assessment protocols, reliable assessment of motor speech disorders over the Internet is possible. Future research methods are outlined.
Resumo:
Previous investigations employing electropalatography (EPG) have identified articulatory timing deficits in individuals with acquired dysarthria. However, this technology is yet to be applied to the articulatory timing disturbance present in Parkinson's disease (PD). As a result, the current investigation aimed to use EPG to comprehensively examine the temporal aspects of articulation in a group of nine individuals with PD at sentence, word and segment level. This investigation followed on from a prior study (McAuliffe, Ward and Murdoch) and similarly, aimed to compare the results of the participants with PD to a group of aged (n=7) and young controls (n=8) to determine if ageing contributed to any articulatory timing deficits observed. Participants were required to read aloud the phrase I saw a ___ today'' with the EPG palate in-situ. Target words included the consonants /1/, /s/ and /t/ in initial position in both the /i/ and /a/ vowel environments. Perceptual investigation of speech rate was conducted in addition to objective measurement of sentence, word and segment duration. Segment durations included the total segment length and duration of the approach, closure/constriction and release phases of EPG consonant production. Results of the present study revealed impaired speech rate, perceptually, in the group with PD. However, this was not confirmed objectively. Electropalatographic investigation of segment durations indicated that, in general, the group with PD demonstrated segment durations consistent with the control groups. Only one significant difference was noted, with the group with PD exhibiting significantly increased duration of the release phase for /1a/ when compared to both the control groups. It is, therefore, possible that EPG failed to detect lingual movement impairment as it does not measure the complete tongue movement towards and away from the hard palate. Furthermore, the contribution of individual variation to the present findings should not be overlooked.
Resumo:
This paper presents a corpus-based descriptive analysis of the most prevalent transfer effects and connected speech processes observed in a comparison of 11 Vietnamese English speakers (6 females, 5 males) and 12 Australian English speakers (6 males, 6 females) over 24 grammatical paraphrase items. The phonetic processes are segmentally labelled in terms of IPA diacritic features using the EMU speech database system with the aim of labelling departures from native-speaker pronunciation. An analysis of prosodic features was made using ToBI framework. The results show many phonetic and prosodic processes which make non-native speakers’ speech distinct from native ones. The corpusbased methodology of analysing foreign accent may have implications for the evaluation of non-native accent, accented speech recognition and computer assisted pronunciation- learning.
Resumo:
The purpose of the present study was to examine the benefits of providing audible speech to listeners with sensorineural hearing loss when the speech is presented in a background noise. Previous studies have shown that when listeners have a severe hearing loss in the higher frequencies, providing audible speech (in a quiet background) to these higher frequencies usually results in no improvement in speech recognition. In the present experiments, speech was presented in a background of multitalker babble to listeners with various severities of hearing loss. The signal was low-pass filtered at numerous cutoff frequencies and speech recognition was measured as additional high-frequency speech information was provided to the hearing-impaired listeners. It was found in all cases, regardless of hearing loss or frequency range, that providing audible speech resulted in an increase in recognition score. The change in recognition as the cutoff frequency was increased, along with the amount of audible speech information in each condition (articulation index), was used to calculate the "efficiency" of providing audible speech. Efficiencies were positive for all degrees of hearing loss. However, the gains in recognition were small, and the maximum score obtained by an listener was low, due to the noise background. An analysis of error patterns showed that due to the limited speech audibility in a noise background, even severely impaired listeners used additional speech audibility in the high frequencies to improve their perception of the "easier" features of speech including voicing
Resumo:
Recent research (Kuhl, 1991) has suggested that the internal structure of vowel categories is graded in terms of stimulus goodness. It has been proposed that a best instance stimulus reflects a central point or prototype, which effectively renders within-category members perceptually more similar. Discrimination experiments suggest a nonlinear relationship between acoustic and perceptual space near category centers (Iverson & Kuhl, 1995b). This phenomenon has been described as the perceptual magnet effect. The present study investigated the presence of the perceptual magnet effect in five Australian vowel categories. Australian English speakers identified, rated, and discriminated between a pool of 32 vowel stimuli that varied in F1 and F2 values. The results from Experiments 1 and 2 showed that subjects were able to judge the quality and identity of each stimulus and that a general grading of stimulus quality was reported. This was not symmetrical, and the subjects' responses varied considerably. In Experiment 3, closer control of the methodology in the discrimination task and of contextual factors influencing the test materials was exercised. Despite this, evidence of the warping of perceptual space in discrimination data was not found. In general, these results do not provide support for the existence of the perceptual magnet effect, and explanations for this finding are discussed.
Resumo:
It has been recognised that in order to study the displacement, timing and co-ordination of articulatory components (i.e., tongue. lips, jaw) in speech production it is desirable to obtain high-resolution movement data on multiple structures inside and outside the vocal tract. Until recently, with the exception of X-ray techniques such as cineradiography, the study 0. speech movements has been hindered by the inaccessibility of the oral cavity during speech. X-ray techniques are generally not used because of unacceptable radiation exposure. The aim of the present study was to demonstrate the use of a new physiological device, the electromagnetic articulograph, for assessing articulatory dysfunction subsequent to traumatic brain injury. The components of the device together with the measuring principle are described and data collected from a single case presented. A 19 year-old male who exhibited dysarthria subsequent to a traumatic brain injury was fitted wit 2 the electromagnetic articulograph (Carstens AG-100) and a kinematic analysis of his tongue movements during production of the lingual consonants it, s, k/ within single syllable words was performed. Examination of kinematic parameters including movemmt trajectories, velocity, and acceleration revealed differences in the speed and accuracy of his tongue movements compared to those produced by a non-neurologically impaired adult male. It was concluded that the articulograph is a useful device for diagnosing speed and accuracy disorders in tongue movements during speech and that the device has potential for incorporation into physiologically based rehabilitation programs as a real-time biofeedback instrument.
Resumo:
Aquaporin 1 (AQP1; also known as CHIP, a channel-forming integral membrane protein of 28 kDa) is the first protein to be shown to function as a water channel and has been recently shown to be present in the rat retina. We previously showed (Kim et al. [1998] Neurosci Lett 244:52-54) that AQP1-like immunoreactivity is present in a certain population of amacrine cells in the rat retina. This study was conducted to characterize these cells in more detail, With immunocytochemistry using specific antisera against AQP1, whole-mount preparations and 50-mum-thick vibratome sections were examined by light and electron microscopy. These cells were a class of amacrine cells, which had symmetric bistratified dendritic trees ramified in stratum 2 and in the border of strata 3 and 4 of the inner plexiform layer (IPL). Their dendritic field diameters ranged from 90 to 230 mum. Double labeling with antisera against AQP1 and gamma-aminobutyric acid or glycine demonstrated that these AQP1-like-immunoreactive amacrine cells were immunoreactive for glycine. Their most frequent synaptic input was from other amacrine cell processes in both sublaminae a and b of the IPL, followed by a few cone bipolar cells. Their primary targets were other amacrine cells and ganglion cells in both sublaminae a and b of the IPL. In addition, synaptic output Onto bipolar cells was rarely observed in sublamina b of the IPL. Thus, the AQP1 antibody labels a class of glycinergic amacrine cells with small to medium-sized dendritic fields in the rat retina. (C) 2002 Wiley-Liss, Inc.
Resumo:
Background and Purpose. This study evaluated an electromyographic technique for the measurement of muscle activity of the deep cervical flexor (DCF) muscles. Electromyographic signals were detected from the DCF, sternocleidomastoid (SCM), and anterior scalene (AS) muscles during performance of the craniocervical flexion (CCF) test, which involves performing 5 stages of increasing craniocervical flexion range of motion-the anatomical action of the DCF muscles. Subjects. Ten volunteers without known pathology or impairment participated in this study. Methods. Root-mean-square (RMS) values were calculated for the DCF, SCM, and AS muscles during performance of the CCF test. Myoelectric signals were recorded from the DCF muscles using bipolar electrodes placed over the posterior oropharyngeal wall. Reliability estimates of normalized RMS values were obtained by evaluating intraclass correlation coefficients and the normalized standard error of the mean (SEM). Results. A linear relationship was evident between the amplitude of DCF muscle activity and the incremental stages of the CCF test (F=239.04, df=36, P<.0001). Normalized SEMs in the range 6.7% to 10.3% were obtained for the normalized RMS values for the DCF muscles, providing evidence of reliability for these variables. Discussion and Conclusion. This approach for obtaining a direct measure of the DCF muscles, which differs from those previously used, may be useful for the examination of these muscles in future electromyographic applications.
Resumo:
Primary objective : To investigate the speed and accuracy of tongue movements exhibited by a sample of children with dysarthria following severe traumatic brain injury (TBI) during speech using electromagnetic articulography (EMA). Methods and procedures : Four children, aged between 12.75-17.17 years with dysarthria following TBI, were assessed using the AG-100 electromagnetic articulography system (Carstens Medizinelektronik). The movement trajectories of receiver coils affixed to each child's tongue were examined during consonant productions, together with a range of quantitative kinematic parameters. The children's results were individually compared against the mean values obtained by a group of eight control children (mean age of 14.67 years, SD 1.60). Main outcomes and results : All four TBI children were perceived to exhibit reduced rates of speech and increased word durations. Objective EMA analysis revealed that two of the TBI children exhibited significantly longer consonant durations compared to the control group, resulting from different underlying mechanisms relating to speed generation capabilities and distances travelled. The other two TBI children did not exhibit increased initial consonant movement durations, suggesting that the vowels and/or final consonants may have been contributing to the increased word durations. Conclusions and clinical implications : The finding of different underlying articulatory kinematic profiles has important implications for the treatment of speech rate disturbances in children with dysarthria following TBI.