20 resultados para Penaeus merguiensis


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Carotenoids, particularly astaxanthin, are the primary pigment in crustacean shell colour. Sub-adults of the western rock lobster, Panulirus cygnus, moult from a deep red colour (termed the red phase) to a much paler colour (the white phase) at sexual maturation. We observe a 2.4-fold difference in the amount of total carotenoid present in the shell extracts of reds compared to whites, as might be expected. However, analysis of the underlying epithelium shows that there is no correlation with shell colour and the amount of free (unesterified) astaxanthin-the level of free astaxanthin in reds and whites is not significantly different. Instead, we observe a correlated two-fold difference in the amount of esterified astaxanthin present in the epithelium of red versus white individuals. These data suggest a role for esterified astaxanthin in regulating shell colour formation and suggest that esterification may promote secretion and eventual incorporation of unesterified astaxanthin into the exoskeleton. (c) 2005 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Penaeid prawns were sampled with a small seine net to test whether catches of postlarvae and juveniles in seagrass were affected by the distance of the seagrass (mainly Zostera capricorni) from mangroves and the density of the seagrass in a subtropical marine embayment. Sampling was replicated on the western and eastern sides of Moreton Bay, Queensland, Australia. Information on catches was combined with broad-scale spatial information on the distribution of habitats to estimate the contribution of four different categories of habitat (proximal dense seagrass, distal dense seagrass, proximal sparse seagrass, distal sparse seagrass) to the overall population of small prawns in these regions of Moreton Bay. The abundance of Penaeus plebejus and Metapenaeus bennettae was significantly and consistently greater in dense seagrass proximal to mangroves than in other types of habitat. Additionally, sparse seagrass close to mangroves supported more of these species than dense seagrass farther away, indicating that the role of spatial arrangement of habitats was more important than the effects of structural complexity alone. In contrast, the abundance of P. esculentus tended to be greatest in sparse seagrass distal from mangroves compared with the other habitats. The scaling up of the results from different seagrass types suggests that proximal seagrass beds on both sides of Moreton Bay provide by far the greatest contribution of juvenile M. bennettae and P. plebejus to the overall populations in the Bay.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

White spot syndrome virus ( WSSV) is a serious pathogen of aquatic crustaceans. Little is known about its transmission in vivo and the immune reaction of its hosts. In this study, the circulating haemocytes of crayfish, Procambarus clarkii, infected by WSSV, and primary haemocyte cultures inoculated with WSSV, were collected and observed by transmission electron microscopy and light microscopy following in situ hybridization. In ultrathin sections of infected haemocytes, the enveloped virions were seen to be phagocytosed in the cytoplasm and no viral particles were observed in the nuclei. In situ hybridization with WSSV-specific probes also demonstrated that there were no specific positive signals present in the haemocytes. Conversely, strong specific positive signals showed that WSSV replicated in the nuclei of gill cells. As a control, the lymphoid organ of shrimp, Penaeus monodon, infected by WSSV was examined by in situ hybridization which showed that WSSV did not replicate within the tubules of the lymphoid organ. In contrast to previous studies, it is concluded that neither shrimp nor crayfish haemocytes support WSSV replication.White spot syndrome virus (WSSV) is a serious pathogen of aquatic crustaceans. Little is known about its transmission in vivo and the immune reaction of its hosts. In this study, the circulating haemocytes of crayfish, Procambarus clarkii, infected by WSSV, and primary haemocyte cultures inoculated with WSSV, were collected and observed by transmission electron microscopy and light microscopy following in situ hybridization. In ultra-thin sections of infected haemocytes, the enveloped virions were seen to be phagocytosed in the cytoplasm and no viral particles were observed in the nuclei. In situ hybridization with WSSV-specific probes also demonstrated that there were no specific positive signals present in the haemocytes. Conversely, strong specific positive signals showed that WSSV replicated in the nuclei of gill cells. As a control, the lymphoid organ of shrimp, Penaeus monodon, infected by WSSV was examined by in situ hybridization which showed that WSSV did not replicate within the tubules of the lymphoid organ. In contrast to previous studies, it is concluded that neither shrimp nor crayfish haemocytes support WSSV replication.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ornate tropical rock lobster, Panulirus ornatus has substantial potential as an aquaculture species though disease outbreaks during the animal's extended larval lifecycle are major constraints for success. In order to effectively address such disease-related issues, an improved understanding of the composition and dynamics of the microbial communities in the larval rearing tanks is required. This study used flow cytometry and molecular microbial techniques (clone libraries and denaturing gradient gel electrophoresis (DGGE)) to quantify and characterise the microbial community of the water column in the early stages (developmental stage I-II) of a P. ornatus larval rearing system. DGGE analysis of a 5000 L larval rearing trial demonstrated a dynamic microbial community with distinct changes in the community structure after initial stocking (day I to day 2) and from day 4 to day 5, after which the structure was relatively stable. Flow cytometry analysis of water samples taken over the duration of the trial demonstrated a major increase in bacterial load leading up to and peaking on the first day of the initial larval moult (day 7), before markedly decreasing prior to when > 50% of larvae moulted (day 9). A clone library of a day 10 water sample taken following a mass larval mortality event reflected high microbial diversity confirmed by statistical analysis indices. Sequences retrieved from both clone library and DGGE analyses were dominated by gamma- and alpha-Proteobacteria affiliated organisms with additional sequences affiliated with beta- and epsilon-Proteobacteria, Bacteroidetes, Cytophagales and Chlamydiales groups. Vibrio affiliated species were commonly retrieved in the clone library, though absent from DGGE analysis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study tetraploid Marsupenaeus japonicus (Bate) embryos were produced by preventing the first division in mitosis. The effectiveness of temperature and chemical shocks for producing tetraploid M. japonicus were assessed when applied at different times postspawning and for different durations. Tetraploid M. japonicus embryos (spawned at 27 degrees C) were produced by heat shocks at 35 degrees C and 36 degrees C in three and eight spawning samples respectively, and a cold shock at 5 degrees C in a single spawning sample. All temperature shocks inducing tetraploidy were applied 18-23 min postspawning for a 5-10 min duration. The percentage of spawnings successfully inducing tetraploid embryos (i.e., frequency of induction) ranged from 33.33% to 66.67% for the 21, 22 and 23 min postspawning heat shock treatment regimes. The percentage of tetraploid embryos within an induction (i.e., induction rate), as determined by flow cytometry, ranged from 8.82% to 98.12% (ave. S.E.) (34.4 +/- 21.4%) for the 35 degrees C shock treatments, from 13.12% to 61.02% (35.0 +/- 5.0%) for the 36 degrees C shock treatments and was 15% for the 5 degrees C cold shock treatment. No tetraploids were produced for spawnings that received heat shocks above 36 degrees C or below 35 degrees C, or for cold shocks above 5 degrees C for any of the tested postspawning treatment and duration times. Chemical shock with 150 mu M 6-dimethylaminopurine did not result in tetraploid M. japonicus embryos at any of the tested postspawning treatment times and durations. Tetraploid M. japonicus embryos were nonviable, with no tetraploid larvae being detected by flow cytometry. Based on our results heat shocking of M. japonicus embryos at 36 degrees C, 23 min postspawning for a 5-10 min duration is the most effective means to produce tetraploids through inhibition of the first mitotic division (taking into consideration the importance of frequency and induction rate equally).