19 resultados para Passive tracking
Resumo:
Modulations in the excitability of spinal reflex pathways during passive rhythmic movements of the lower limb have been demonstrated by a number of previous studies [4]. Less emphasis has been placed on the role of supraspinal pathways during passive movement, and on tasks involving the upper limb. In the present study, transcranial magnetic stimulation (TMS) was delivered to subjects while undergoing passive flexion-extension movements of the contralateral wrist. Motor evoked potentials (MEPs) of flexor carpi radialis (FCR) and abductor pollicus brevis (APB) muscles were recorded. Stimuli were delivered in eight phases of the movement cycle during three different frequencies of movement. Evidence of marked modulations in pathway excitability was found in the MEP amplitudes of the FCR muscle, with responses inhibited and facilitated from static values in the extension and flexion phases, respectively. The results indicated that at higher frequencies of movement there was greater modulation in pathway excitability. Paired-pulse TMS (sub-threshold conditioning) at short interstimulus intervals revealed modulations in the extent of inhibition in MEP amplitude at high movement frequencies. In the APE muscle, there was some evidence of phasic modulations of response amplitude, although the effects were less marked than those observed in FCR. It is speculated that these modulatory effects are mediated via Ia afferent pathways and arise as a consequence of the induced forearm muscle shortening and lengthening. Although the level at which this input influences the corticomotoneuronal pathway is difficult to discern, a contribution from cortical regions is suggested. (C) 2001 Published by Elsevier Science B.V.
Resumo:
Thirteen intubated, high dependency patients with neurological injuries were studied in order to investigate the short term respiratory effects of neurophysiological facilitation and passive movement on tidal volume (V-T), minute ventilation (V-E), respiratory rate (V-R) and oxygen saturation (SpO(2)). The subjects were studied under four conditions: no intervention (control) and during periods of neurophysiological facilitation, passive movement and sensory stimulation. All periods were standardised to three minutes duration and all parameters were recorded before and after each intervention. Neurophysiological facilitation produced significant increases (p < 0.01) in V-E and SpO(2) (p < 0.05) when compared with control values, with an overall mean increase in V-E of 14.6%. Similarly, passive movement increased V-E (p < 0.01) by an average of 9.8% and also increased SpO(2) (p < 0.01). In contrast, sensory stimulation produced significant increases (p < 0.01) in SpO(2) with control levels, with no significant change in V-T or V-E. There was no significant difference in V-R with all treatments. This study provides preliminary evidence of improved short term ventilatory function following neurophysiological facilitation, independent of generalised sensory stimulation, which has not been previously examined in the literature, supporting its use in the management of high dependency neurological patients.
Resumo:
This study was conducted to determine the effect of increasing age on four shoulder movements and to explore the need for normative data for shoulder range of motion (ROM) in people aged 50 years and older. Forty-one participants were conveniently recruited according to four age categories: 50-59 years, 60-69 years, 70-79 years and 80 years and over. Goniometric measurement of bilateral active and passive ROM for flexion, abduction, internal rotation and external rotation was analysed using paired sample t-tests and compared with the norms of the American Academy of Orthopaedic Surgeons (AAOS) using one sample t-tests. Passive ROM was greater than active ROM for all movements (p