79 resultados para PHOSPHORYLATION


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Whole body glucose homeostasis is dependent on the action of insulin. In muscle and adipose tissues, insulin stimulates glucose uptake by inducing the translocation of vesicles containing the glucose transporter GLUT4 to the cell surface. While the mechanisms of insulin-regulated GLUT4 translocation are not fully understood, some signaling intermediates have been implicated in this process. Interestingly, som: of these intermediates, including IRS-1 and PI3K, have been localised to the same intracellular membrane fraction as the GLUT4 storage pool, designated here as the high-speed pellet (HSP) fraction. This raises the possibility that many of the downstream insulin signaling intermediates may be located within close proximity to intracellular GLUT4. The goal of this study was to test this hypothesis in 3T3-L1 adipocytes. A large proportion of adipocyte phosphoproteins co-fractionated in the HSP fraction. In an attempt to resolve insulin-regulatable phosphoproteins, we subjected P-32-labeled subcellular fractions to two-dimensional gel electrophoresis (2-DE). Insulin reproducibly stimulated the phosphorylation of 12 spots in the HSP fraction. Most of the HSP phosphoproteins were insoluble in the nonionic detergent Triton X-100, whereas integral membrane proteins such as GLUT4 and intracellular caveolin were soluble under the same conditions. These results suggest that insulin-regulatable phosphoproteins in adipocytes may be organized in microdomains within the cell and that this assembly may act as an efficient conductor of the signaling proteins to rapidly facilitate downstream biological responses. Further study is required to establish the molecular basis for these detergent-insoluble signaling complexes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PNU-87407 and PrNU-88509, beta-ketoamide anthelmintics that are structurally related to each other and to the salicylanilide anthelmintic closantel, exhibit different anthelmintic spectra and apparent toxicity in mammals, The basis for this differential pharmacology was examined in experiments that measured motility and adenosine triphosphate (ATP) levels in larval and adult stages of the gastrointestinal nematode, Haemonchus contortus, and in a vertebrate liver cell line and mitochondria, PNU-87407 and PNU-88509 both exhibited functional cross-resistance with closantel in larval migration assays using closantel-resistant and -sensitive isolates of H, contortus. Each compound reduced motility and,ATP levels in cultured adult H. contortus in a concentration- and time-dependent manner: however, motility was reduced more rapidly by PNU-88509, and ATP levels were reduced by lower concentrations of closantel than the beta-ketoamides. Tension recordings from segments of adult H, contortus showed that PNU-88509 induces spastic paralysis, while PNU-87407 and closantel induce flaccid paralysis of the somatic musculature. Marked differences in the actions of these compounds were also observed in the mammalian preparations. In Chang liver cells, ATP levels were reduced after 3 h exposures to greater than or equal to 0.25 mu M PNU-87407 1 mu M closantel or 10 mu M PNU-88509, Reductions in ATP caused by PNU-88509 were completely reversible, while the effects of closantel and PNU-87407; were irreversible. PNU-87407, closantel and PNU-88509 uncoupled oxidative phosphorylation in isolated rat liver mitochondria, inhibiting the respiratory control index (with glutamate or succinate as substrate) by 50% at concentrations of 0.14, 0.9 and 7.6 mu M respectively.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The high-affinity receptors for human granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin-1 (IL-3), and IL-5 are heterodimeric complexes consisting of cytokine-specific alpha subunits and a common signal-transducing beta subunit (h beta c). We have previously demonstrated the oncogenic potential of this group of receptors by identifying constitutively activating point mutations in the extracellular and transmembrane domains of h beta c. We report here a comprehensive screen of the entire h beta c molecule that has led to the identification of additional constitutive point mutations by virtue of their ability to confer factor independence on murine FDC-P1 cells. These mutations were clustered exclusively in a central region of h beta c that encompasses the extracellular membrane-proximal domain, transmembrane domain, and membrane-proximal region of the cytoplasmic domain. Interestingly, most h beta c mutants exhibited cell type-specific constitutive activity, with only two transmembrane domain mutants able to confer factor independence on both murine FDC-P1 and BAF-B03 cells. Examination of the biochemical properties of these mutants in FDC-P1 cells indicated that MAP kinase (ERK1/2), STAT, and JAK2 signaling molecules were constitutively activated. In contrast, only some of the mutant beta subunits were constitutively tyrosine phosphorylated. Taken together; these results highlight key regions involved in h beta c activation, dissociate h beta c tyrosine phosphorylation from MAP kinase and STAT activation, and suggest the involvement of distinct mechanisms by which proliferative signals can be generated by h beta c. (C) 1998 by The American Society of Hematology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The basic framework for the JAK/STAT pathway is well documented. Recruitment of latent cytoplasmic STAT transcription factors to tyrosine phosphorylated docking sites on cytokine receptors and their JAK-mediated phosphorylation instigates their translocation to the nucleus and their ability to bind DNA, The biochemical processes underlying recruitment and activation of this pathway have commonly been studied in reconstituted in vitro systems using previously defined recombinant signaling components. We have dissected the Interferon gamma (IFN gamma) signal transduction pathway in crude extracts from wild-type and STAT1-negative mutant cell Lines by real-time BIAcore analysis, size-exclusion (SE) chromatography and immune-detection. The data indicate that in detergent-free cell extracts: (1) the phospho-tyrosine (Y440P)-containing peptide motif of the IFN gamma-receptor ct-chain interacts directly with STAT1, or STAT1 complexes, and no other protein; (2) nonactivated STAT 1 is present in a higher molecular weight complex(es) and, at least for IFN gamma-primed cells, is available for recruitment to the activated IFN gamma-receptor from only a subset of such complexes; (3) activated STAT1 is released from the receptor as a monomer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Previously we described activating mutations of h beta(c), the common signaling subunit of the receptors for the hematopoietic and inflammatory cytokines, GM-CSF, IL-3, and IL-5. The activated mutant, h beta(c)FI Delta, is able to confer growth factor-independent proliferation on the murine myeloid cell line FDC-P1, and on primary committed myeloid progenitors. We have used this activating mutation to study the effects of chronic cytokine receptor stimulation. Transgenic mice were produced carrying the h beta(c)FI Delta cDNA linked to the constitutive promoter derived from the phosphoglycerate kinase gene, PGK-1. Transgene expression was demonstrated in several tissues and functional activity of the mutant receptor was confirmed in hematopoietic tissues by the presence of granulocyte macrophage and macrophage colony-forming cells (CFU-GM and CFU-M) in the absence of added cytokines. All transgenic mice display a myeloproliferative disorder characterized by splenomegaly, erythrocytosis, and granulocytic and megakaryocytic hyperplasia. This disorder resembles the human disease polycythemia vera, suggesting that activating mutations in h beta(c) may play a role in the pathogenesis of this myeloproliferative disorder. In addition, these transgenic mice develop a sporadic, progressive neurological disease and display bilateral, symmetrical foci of necrosis in the white matter of brain stem associated with an accumulation of macrophages. Thus, chronic h beta(c) activation has the potential to contribute to pathological events in the central nervous system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Crystals of recombinant importin alpha, the nuclear-import receptor, have been obtained at two different pH conditions by vapour diffusion using sodium citrate as precipitant and dithiothreitol as an additive. At pH 4-5, the crystals have the symmetry of the trigonal space group P3(1)21 or P3(2)21 (a = b = 78.0, c = 255.8 Angstrom, gamma = 120 degrees); at pH 6-7, the crystals have the symmetry of the orthorhombic space group P2(1)2(1)2(1) (a = 78.5, b = 89.7, c = 100.5 Angstrom). In both cases, there is probably one molecule of importin ct in the asymmetric unit. At least one of the crystal forms diffracts to a resolution higher than 3 Angstrom using the laboratory X-ray source; the crystals are suitable for crystal structure determination.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The high affinity receptor for human granulocyte-macrophage colony-stimulating factor (GM-CSF) consists of a cytokine-specific alpha-subunit (hGMR alpha) and a common signal-transducing beta-subunit (hpc) that is shared with the interleukin-3 and -5 receptors, We have previously identified a constitutively active extracellular point mutant of hpc, I374N, that can confer factor independence on murine FDC-P1 cells but not BAF-B03 or CTLL-2 cells (Jenkins, B. J., D'Andrea, R. J., and Gonda, T. J. (1995) EMBO J. 14, 4276-4287), This restricted activity suggested the involvement of cell type-specific signaling molecules in the activation of this mutant. We report here that one such molecule is the mouse GMR alpha (mGMR alpha) subunit, since introduction of mGMR alpha, but not hGMR alpha, into BAF-B03 or CTLL-2 cells expressing the I374N mutant conferred factor independence, Experiments utilizing mouse/human chimeric GMR alpha subunits indicated that the species specificity lies in the extracellular domain of GMRa. Importantly, the requirement for mGMR alpha correlated with the ability of I374N (but not wild-type hpc) to constitutively associate with mGMRa. Expression of I374N in human factor-dependent UT7 cells also led to factor-independent proliferation, with concomitant up-regulation of hGMR alpha surface expression. Taken together, these findings suggest a critical role for association with GMR alpha in the constitutive activity of I374N.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Phenylalanine hydroxylase converts phenylalanine to tyrosine, a rate-limiting step in phenylalanine catabolism and protein and neurotransmitter biosynthesis. It is tightly regulated by the substrates phenylalanine and tetrahydrobiopterin and by phosphorylation. We present the crystal structures of dephosphorylated and phosphorylated forms of a dimeric enzyme with catalytic and regulatory properties of the wild-type protein. The structures reveal a catalytic domain flexibly linked to a regulatory domain. The latter consists of an N-terminal autoregulatory sequence (containing Ser 16, which is the site of phosphorylation) that extends over the active site pocket, and an alpha-beta sandwich core that is, unexpectedly, structurally related to both pterin dehydratase and the regulatory domains of metabolic enzymes. Phosphorylation has no major structural effects in the absence of phenylalanine, suggesting that phenylalanine and phosphorylation act in concert to activate the enzyme through a combination of intrasteric and possibly allosteric mechanisms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have determined the post-translational modifications of the major capsid protein, L1 of human papillomavirus (HPV) type 6b. Since this virus cannot be cultured in the laboratory to obtain sufficient material for a study, a recombinant L1 protein produced in a vaccinia virus expression system was used in this investigation. Our results show that this protein is phosphorylated at serine residues and is also glycosylated. No myristoylation or palmitoylation was detected. The fraction of L1 protein incorporated into virus-like particles was not glycosylated. Since recombinant L1 protein is a potential human vaccine candidate, knowledge of the post-translation modifications of this protein may prove useful for the design of anti-HPV vaccines. (C) 1999 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Significant progress has been achieved in elucidating the role of the plasma membrane Ca2+-ATPase in cellular Ca2+ homeostasis and physiology since the enzyme was first purified and physiology since the enzyme was first purified and cloned a number of years ago. The simple notion that the PM Ca2+-ATPase controls resting levels of [Ca2+](CYT) has been challenged by the complexity arising from the finding of four major isoforms and splice variants of the Ca2+ pump, and the finding that these are differentially localized in various organs and subcellular regions. Furthermore, the isoforms exhibit differential sensitivities to Ca2+, calmodulin, ATP, and kinase-mediated phosphorylation. The latter pathways of regulation can give rise to activation or inhibition of the Ca2+ pump activity, depending on the kinase and the particular Ca2+ pump isoform. Significant progress is being made in elucidating subtle and more profound roles of the PM Ca2+-ATPase in the control of cellular function. Further understanding of these roles awaits new studies in both transfected cells and intact organelles, a process that will be greatly aided by the development of new and selective Ca2+ pump inhibitors. (C) 1999 Elsevier Science Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Insulin stimulates glucose uptake into muscle and fat cells by promoting the translocation of glucose transporter 4 (GLUT4) to the cell surface. Phosphatidylinositide 3-kinase (PI3K) has been implicated in this process. However, the involvement of protein kinase B (PKB)/Akt, a downstream target of PI3K in regulation of GLUT4 translocation, has been controversial. Here we report that microinjection of a PKB substrate peptide or an antibody to PKB inhibited insulin-stimulated GLUT4 translocation to the plasma membrane by 66 or 56%, respectively. We further examined the activation of PKB isoforms following treatment of cells with insulin or platelet-derived growth factor (PDGF) and found that PKB beta is preferentially expressed in both rat and 3T3-L1 adipocytes, whereas PKB alpha expression is down-regulated in 3T3-L1 adipocytes. A switch in growth factor response was also observed when 3T3-L1 fibroblasts were differentiated into adipocytes. While PDGF was more efficacious than insulin in stimulating PKB phosphorylation in fibroblasts, PDGF did not stimulate PKB beta phosphorylation to any significant extent in adipocytes, as assessed by several methods. Moreover, insulin, but not PDGF, stimulated the translocation of PKB beta to the plasma membrane and high-density microsome fractions of 3T3-L1 adipocytes. These results support a role for PKB beta in insulin-stimulated glucose transport in adipocytes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Enamel-producing cells (ameloblasts) pass through several phenotypic and functional stages during enamel formation. In the transition between secretory and maturation stages, about one quarter of the ameloblasts suddenly undergo apoptosis. We have studied this phenomenon using the continuously erupting rat incisor model. A special feature of this model is that all stages of ameloblast differentiation are presented within a single longitudinal section of the developing tooth. This permits investigation of the temporal sequence of gene and growth factor receptor expression during ameloblast differentiation and apoptosis. We describe the light and electron microscopic morphology of ameloblast apoptosis and the pattern of insulin-like growth factor-1 receptor expression by ameloblasts in the continuously erupting rat incisor model. In the developing rat incisor, ameloblast apoptosis is associated with downregulated expression of the insulin-like growth factor-1 receptor. These data are consistent with the hypothesis that ameloblasts are hard wired for apoptosis and that insulin-like growth factor-1 receptor expression is required to block the default apoptotic pathway. Possible mechanisms of insulin-like growth factor-1 inhibition of ameloblast apoptosis are presented. The rat incisor model may be useful in studies of physiological apoptosis as it presents apoptosis in a predictable pattern in adult tissues.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

1 We identified putative beta(4)-adrenoceptors by radioligand binding, measured increases in ventricular contractile force by (-)-CGP 12177 and (+/-)-cyanopindolol and demonstrated increased Ca2+ transients by (-)-CGP 12177 in rat cardiomyocytes. 2 (-)-[H-3]-CGP 12177 labelled 13-22 fmol mg(-1) protein ventricular beta(1), beta(2)-adrenoceptors (pK(D) similar to 9.0) and 50-90 fmol mg(-1) protein putative beta(4)-adrenoceptors (pK(D) similar to 7.3). The affinity values (PKi) for (beta(1),beta(2)-) and putative beta(4)-adrenoceptors, estimated from binding inhibition, were (-)-propranolol 8.4, 5.7; (-)-bupranolol 9.7, 5.8; (+/-)-cyanopindolol 10.0,7.4. 3 In left ventricular papillary muscle, in the presence of 30 mu M 3-isobutyl-1-methylxanthine, (-)CGP 12177 and (+/-)-cyanopindolol caused positive inotropic effects, (pEC(50) (-)-CGP 12177, 7.6; (+/-)-cyanopindolol, 7.0) which were antagonized by (-)-bupranolol (pK(B) 6.7-7.0) and (-)-CGP 20712A (pK(B) 6.3-6.6). The cardiostimulant effects of(-)-CGP 12177 in papillary muscle, left and right atrium were antagonized by (+/-)-cyanopindolol (pK(i), 7.0-7.4). 4 (-)-CGP 12177 (1 mu M) in the presence of 200 nM (-)-propranolol increased Ca2+ transient amplitude by 56% in atrial myocytes, but only caused a marginal increase in ventricular myocytes. In the presence of 1 mu M 3-isobutyl-1-methylxanthine and 200 nM (-)-propranolol, 1 mu M (-)-CGP 12177 caused a 73% increase in Ca2+ transient amplitude in ventricular myocytes. (-)-CGP 12177 elicited arrhythmic transients in some atrial and ventricular myocytes. 5 Probably by preventing cyclic AMP hydrolysis, 3-isobutyl-1-methylxanthine facilitates the inotropic function of ventricular putative beta(4)-adrenoceptors. suggesting coupling to G(s) protein-adenylyl cyclase. The receptor-mediated increases in contractile force are related to increases of Ca2+ in atrial and ventricular myocytes. The agreement of binding affinities of agonists with cardiostimulant potencies is consistent with mediation through putative beta(4)-adrenoceptors labelled with (-)-[H-3]-CGP 12177.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cysteine residues 86 and 91 of the beta subunit of the human interleukin (hIL)-3 receptor (h beta c) participate in disulfide-linked receptor subunit heterodimerization. This linkage is essential for receptor tyrosine phosphorylation, since the Cys-86 --> Ala (Mc4) and Cys-91 --> Ala (Mc5) mutations abolished both events. Here, we used these mutants to examine whether disulfide-linked receptor dimerization affects the biological and biochemical activities of the IL-3 receptor. Murine T cells expressing hIL-3R alpha and Mc4 or Mc5 did not proliferate in hIL-3, whereas cells expressing wild-type h beta c exhibited rapid proliferation. However, a small subpopulation of cells expressing each mutant could be selected for growth in IL-3, and these proliferated similarly to cells expressing wild-type h beta c, despite failing to undergo IL-3-stimulated h beta e tyrosine phosphorylation. The Mc4 and Mc5 mutations substantially reduced, but did not abrogate, IL-3-mediated anti-apoptotic activity in the unselected populations. Moreover, the mutations abolished IL-3-induced JAK2, STAT, and AKT activation in the unselected cells, whereas activation of these molecules in IL-3-selected cells was normal. In contrast, Mc4 and Mc5 showed a limited effect on activation of Erk1 and -2 in unselected cells. These data suggest that whereas disulfide-mediated cross-linking and h beta c tyrosine phosphorylation are normally important for receptor activation, alternative mechanisms can bypass these requirements.